Multihop wireless mesh networks can provide Internet access over a wide area with minimal infrastructure expenditure. In this work, we present a measurement driven deployment strategy and a data-driven model to study the impact of design and topology decisions on network-wide performance and cost. We perform extensive measurements in a twotier urban scenario to characterize the propagation environment and correlate received signal strength with application layer throughput. We find that well-known estimates for pathloss produce either heavily overprovisioned networks resulting in an order of magnitude increase in cost for high pathloss estimates or completely disconnected networks for low pathloss estimates. Modeling throughput with wireless interface manufacturer specifications similarly results in severely underprovisioned networks. Further, we measure competing, multihop flow traffic matrices to empirically define achievable throughputs of fully backlogged, rate limited, and web-emulated traffic. We find that while fully backlogged flows produce starving nodes, rate-controlling flows to a fixed value yields fairness and high aggregate throughput. Likewise, transmission gaps occurring in statistically multiplexed web traffic, even under high offered load, remove starvation and yield high performance. In comparison, we find that well-known noncompeting flow models for mesh networks over-estimate network-wide throughput by a factor of 2. Finally, our placement study shows that a regular grid topology achieves up to 50 percent greater throughput than random node placement.
Abstract-Significant progress has been made in understanding the behavior of TCP and congestion-controlled traffic over multihop wireless networks. Despite these advances, however, no prior work identified severe throughput imbalances in the basic scenario of mesh networks, in which one-hop flows contend with two-hop flows for gateway access. In this paper, we demonstrate via real network measurements, test-bed experiments, and an analytical model that starvation exists in such a scenario, i.e., the one-hop flow receives most of the bandwidth while the twohop flow starves. Our analytical model yields a solution consisting of a simple contention window policy that can be implemented via mechanisms in IEEE 802.11e. Despite its simplicity, we demonstrate through analysis, experiments, and simulations, that the policy has a powerful effect on network-wide behavior, shifting the network's queuing points, mitigating problematic MAC behavior, and ensuring that TCP flows obtain a fair share of the gateway bandwidth, irrespective of their spatial locations.
Abstract-Significant progress has been made in understanding the behavior of TCP and congestion-controlled traffic over multihop wireless networks. Despite these advances, however, no prior work identified severe throughput imbalances in the basic scenario of mesh networks, in which one-hop flows contend with two-hop flows for gateway access. In this paper, we demonstrate via real network measurements, test-bed experiments, and an analytical model that starvation exists in such a scenario, i.e., the one-hop flow receives most of the bandwidth while the twohop flow starves. Our analytical model yields a solution consisting of a simple contention window policy that can be implemented via mechanisms in IEEE 802.11e. Despite its simplicity, we demonstrate through analysis, experiments, and simulations, that the policy has a powerful effect on network-wide behavior, shifting the network's queuing points, mitigating problematic MAC behavior, and ensuring that TCP flows obtain a fair share of the gateway bandwidth, irrespective of their spatial locations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.