This study compares the physicochemical properties of six electrolytes comprising of three salts: LiFTFSI, NaFTFSI and KFTFSI in two solvent mixtures, the binary (3EC/7EMC) and the ternary (EC/PC/3DMC). The transport properties (conductivity, viscosity) as a function of temperature and concentration were modeled using the extended Jones-Dole-Kaminsky equation, the Arrhenius model, and the Eyring theory of transition state for activated complexes. Results are discussed in terms of ionicity, solvation shell, and cross-interactions between electrolyte components. The application of the six formulated electro-lytes in symmetrical activated carbon (AC)//AC supercapacitors (SCs) was characterized by cyclic voltammetry (CV), galvanostatic cycling with potential limitation (GCPL), electrochemical impedance spectroscopy (EIS) and accelerated aging. Results revealed that the geometrical flexibility of the FTFSI anion allows it to access and diffuse easily in AC whereas its counter ions (Li + , Na + or K + ) can remain trapped in porosity. However, this drawback was partially resolved by mixing LiFTFSI and KFTFSI salts in the electrolyte.
This study reports two deep eutectic solvents (DESs) based on alkaline imide salts with asymmetric anions as functional electrolytes for supercapacitor (SC) application. The eutectic mixture of sodium (fluorosulfonyl) (trifluoromethanesulfonyl) imide (NaFTFSI) or sodium cyano-trifluoromethanesulfonyl imide (NaTFSICN) with ethylene carbonate (EC) delivers a nonflammable and stable liquid. The eutectic diagrams of the electrolytes directed to an optimal composition (w salt = 0.25), hinging to that of conventional carbonate-based electrolytes, i. e., 1 mol L À 1 . The volumetric properties of the DESs revealed a "stacking" effect, reflecting a strong coordination bond between the imide and EC anions without solvating the Na + cations. The DES transport properties (i. e., viscosity, conductivity, and ionicity) and temperature variations designate a high organization, similar to ionic liquids. The DESs, when coupled with activated carbon electrodes in a two-electrode symmetric configuration, yield specific capacities of 150 F g À 1 at a normalized current density of 0.5 A g À 1 (and 120 F g À 1 at 2 A g À 1 ). The SC maintained 80 % of its initial capacity beyond 100 h of floating at an operating voltage of 2.4 V and showed a 150 mV per hour potential loss under self-discharge. The devised eutectic mixtures offer a promising new pathway for simple, safe, and effective electrolytes for SC applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.