Composite biomaterials as artificial bone graft materials are pushing the present frontiers of bioengineering. In this study, a biomimetic, osteoconductive tricomposite scaffold made of hydroxyapatite (HA) embedded in non-mulberry Antheraea assama (A. assama) silk fibroin fibers and its fibroin solution is explored for its osteogenic potential. Scaffolds were physico-chemically characterized for morphology, porosity, secondary structure conformation, water retention ability, biodegradability, and mechanical property. The results revealed a ∼5-fold increase in scaffold compressive modulus on addition of HA and silk fibers to liquid silk as compared to pure silk scaffolds while maintaining high scaffold porosity (∼90%) with slower degradation rates. X-ray diffraction (XRD) results confirmed deposition of HA crystals on composite scaffolds. Furthermore, the crystallite size of HA within scaffolds was strongly regulated by the intrinsic physical cues of silk fibroin. Fourier transform infrared (FTIR) spectroscopy studies indicated strong interactions between HA and silk fibroin. The fabricated tricomposite scaffolds supported enhanced cellular viability and function (ALP activity) for both MG63 osteosarcoma and human bone marrow stem cells (hBMSCs) as compared to pure silk scaffolds without fiber or HA addition. In addition, higher expression of osteogenic gene markers such as collagen I (Col-I), osteocalcin (OCN), osteopontin (OPN), and bone sialoprotein (BSP) further substantiated the applicability of HA composite silk scaffolds for bone related applications. Immunostaining studies confirmed localization of Col-I and BSP and were in agreement with real-time gene expression results. These findings demonstrate the osteogenic potential of developed biodegradable tricomposite scaffolds with the added advantage of the affordability of its components as bone graft substitute materials.
The anatomical complexity and slow regeneration capacity of hyaline cartilage at the osteochondral interface pose a great challenge in the repair of osteochondral defects (OCD). In this study, we utilized the processing feasibility offered by the sol derived 70S bioactive glass and silk fibroin (mulberry Bombyx mori and endemic Indian non-mulberry Antheraea assama), in fabricating a well-integrated, biomimetic scaffolding matrix with a coherent interface. Differences in surface properties such as wettability and amorphousness between the two silk groups resulted in profound variations in cell attachment and extracellular matrix protein deposition. Mechanical assessment showed that the biphasic composites exhibited both an elastic region pertinent for cartilage tissue and a stiff compression resistant region simulating the bone phase. In vitro biological studies revealed that the biphasic mats presented spatial confinement for the growth and maturation of both osteoblasts and chondrocytes, marked by increased alkaline phosphatase (ALP) activity, osteopontin (OPN), sulfated glycosaminoglycan (sGAG) and collagen secretion in the cocultured mats. The non-mulberry silk based biphasic composite mats performed better than their mulberry counterpart, as evidenced by enhanced expression levels of key cartilage and bone specific marker genes. Therefore, the developed biphasic scaffold show great promise for improving the current clinical strategies for osteochondral tissue repair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.