Linker histone H1 proteins bind to nucleosomes and facilitate chromatin compaction 1 , although their biological functions are poorly understood. Histone H1 ( HIST1H1B-E ) mutations are highly recurrent in B-cell lymphomas, but their cancer relevance and mechanism are unknown. Here we show that lymphoma-associated H1 alleles are genetic driver mutations in lymphomas. Disruption of H1 function results in profound architectural remodeling of the genome characterized by large-scale, yet focal shifts of chromatin from a compacted, to a relaxed state. This decompaction drives distinct changes in epigenetic states, primarily due to gain of histone H3 lysine 36 dimethylation, and/or loss of repressive H3 lysine 27 trimethylation. These changes unlock expression of stem cell genes that are normally silenced during early development. Loss of H1c and H1e alleles in mice conferred enhanced fitness and self-renewal properties to germinal center B-cells, ultimately leading to aggressive lymphoma with enhanced repopulating potential. Collectively, our data indicate that H1 proteins are normally required to sequester early developmental genes into architecturally inaccessible genomic compartments. We furthermore establish H1 as a bona fide tumor suppressor, whose mutation drives malignant transformation primarily through three-dimensional genome reorganization, followed by epigenetic reprogramming and derepression of developmentally silenced genes.
We report on the observation of incoherent Cherenkov radiation emitted by a 5.3 GeV positron beam circulating in the Cornell electron-positron storage ring as the beam passes in the close vicinity of the surface of a fused silica radiator (i.e., at a distance larger than 0.8 mm). The shape of the radiator was designed in order to send the Cherenkov photons towards the detector, consisting of a compact optical system equipped with an intensified camera. The optical system allows both the measurements of 2D images and angular distribution including polarization study. The corresponding light intensity has been measured as a function of the distance between the beam and the surface of the radiator and has shown a good agreement with theoretical predictions. For highly relativistic particles, a large amount of incoherent radiation is produced in a wide spectral range. A light yield of 0.8×10^{-3} photon per particle per turn has been measured at a wavelength of 600±10 nm in a 2 cm long radiator and for an impact parameter of 1 mm. This will find applications in accelerators as noninvasive beam diagnostics for both leptons and hadrons.
A beam profile monitor utilizing visible synchrotron radiation (SR) from a bending magnet has been designed and installed in Cornell Electron-Positron Storage Ring (CESR). The monitor employs a double-slit interferometer to measure both the horizontal and vertical beam sizes over a wide range of beam currents. By varying the separation of the slits, beam sizes ranging from 50 to 500 um can be measured with a resolution of approximately 5 um. To measure larger beam size (> 500 um), direct imaging can be employed by rotating the double slits away from SR beam path. By imaging the pi-polarized component of SR, a small vertical beam size (~70 um) was measured during an undulator test run in CESR, which was consistent with the interferometer measurement. To measure the bunch length, a beam splitter is inserted to direct a fraction of light into a streak camera setup. This beam size monitor measures the transverse and longitudinal beam sizes simultaneously, which is successfully used for intrabeam scattering studies. Detailed error analysis is discussed.Comment: 26 pages, 13 figure
Cornell's electron/positron storage ring (CESR) was modified over a series of accelerator shutdowns beginning in May 2008, which substantially improves its capability for research and development for particle accelerators. CESR's energy span from 1.8 to 5.6 GeV with both electrons and positrons makes it ideal for the study of a wide spectrum of accelerator physics issues and instrumentation related to present light sources and future lepton damping rings. Additionally a number of these are also relevant for the beam physics of proton accelerators. This paper is the third in a series of four describing the conversion of CESR to the test accelerator, CESRTA. The first two papers discuss the overall plan for the conversion of the storage ring to an instrument capable of studying advanced accelerator physics issues[1] and the details of the vacuum system upgrades[2]. This paper focusses on the necessary development of new instrumentation, situated in four dedicated experimental regions, capable of studying such phenomena as electron clouds (ECs) and methods to mitigate EC effects. The fourth paper in this series describes the vacuum system modifications of the superconducting wigglers to accommodate the diagnostic instrumentation for the study of EC behavior within wigglers. While the initial studies of CESRTA focussed on questions related to the International Linear Collider damping ring design, CESRTA is a very versatile storage ring, capable of studying a wide range of accelerator physics and instrumentation questions.
The performance of a particle accelerator can be limited by the build-up of an electron cloud (EC) in the vacuum chamber. Secondary electron emission from the chamber walls can contribute to EC growth. An apparatus for in-situ measurements of the secondary electron yield (SEY) in the Cornell Electron Storage Ring (CESR) was developed in connection with EC studies for the CESR Test Accelerator program. The CESR in-situ system, in operation since 2010, allows for SEY measurements as a function of incident electron energy and angle on samples that are exposed to the accelerator environment, typically 5.3 GeV counter-rotating beams of electrons and positrons. The system was designed for periodic measurements to observe beam conditioning of the SEY with discrimination between exposure to direct photons from synchrotron radiation versus scattered photons and cloud electrons. The samples can be exchanged without venting the CESR vacuum chamber. Measurements have been done on metal surfaces and EC-mitigation coatings. The in-situ SEY apparatus and improvements to the measurement tools and techniques are described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.