To determine the effects of acute myocardial infarction on the regulation of angiotensin II (Ang II) receptors and contractile performance of left and right ventricular myocytes, coronary artery ligation was surgically induced in rats, and Ang II receptor density and affinity and the mechanical properties of surviving muscle cells were examined 1 week later. Physiological determinations of cardiac pump function revealed the presence of ventricular failure, which was associated at the cellular level with a depression in the velocity of myocyte shortening and relengthening, a prolongation of time to peak shortening, and a reduction in the extent of cell shortening. These abnormalities in single-cell function were more prominent in left than in right ventricular myocytes. Cellular hypertrophy was documented by increases in cell length and width, which were also greater in the spared myocytes of the infarcted left ventricle. Reactive hypertrophy was accompanied by a 1.84- and 1.85-fold increase in the density of Ang II receptors on left and right myocytes, respectively. On the other hand, the affinity of Ang II receptors for the radiolabeled antagonist was not altered. However, Ang II-stimulated phosphoinositol turnover was enhanced by 3.7- and 2.5-fold in left and right myocytes, respectively, after infarction. Ventricular myocytes were found to possess the AT1 receptor subtype exclusively. In conclusion, myocardial infarction leads to impairment in the contractile behavior of the remaining cells and to the activation of Ang II receptors and effector pathway associated with these receptors, which may be involved in the reactive growth adaptation of the viable myocytes.
A series of 2-(aminomethyl)chromans (2-AMCs) was synthesized and evaluated for their affinity and selectivity for both the high- and low-affinity agonist states (D2High and D2Low, respectively) of the dopamine (DA) D2 receptor. The 7-hydroxy-2-(aminomethyl)chroman moiety was observed to be the primary D2 agonist pharmacophore. The 2-methylchroman moiety was discovered to be an entirely novel scaffold which could be used to access the D2 agonist pharmacophore. Attaching various simple alkyl and arylalkyl side chains to the 7-hydroxy 2-AMC nucleus had significant effects on selectivity for the D2High receptor vs the 5HT1A and alpha 1 receptors. A novel DA partial agonist, (R)-(-)-2-(benzylamino)methyl)chroman-7-ol [R-(-)-35c], was identified as having the highest affinity and best selectivity for the D2High receptor vs the alpha 1 and 5HT1A receptors. Several regions of the 2-AMC nucleus were modified and recognized as potential sites to modulate the level of intrinsic activity. The global minimum conformer of the 7-hydroxy-2-AMC moiety was identified as fulfilling the McDermed model D2 agonist pharmacophoric criteria and was proposed as the D2 receptor-bound conformation. Structure-activity relationships gained from these studies have aided in the synthesis of D2 partial agonists of varying intrinsic activity levels. These agents should be of therapeutic value in treating disorders resulting from hypo- and hyperdopaminergic activity, without the side effects associated with complete D2 agonism or antagonism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.