The gecko adhesive system has attracted significant attention since the discovery that van der Waals interactions, which are always present between surfaces, are predominantly responsible for their adhesion. The unique anisotropic frictional–adhesive capabilities of the gecko adhesive system originate from complex hierarchical structures and just as importantly, the anisotropic articulation of the structures. Here, by cleverly engineering asymmetric polymeric microstructures, a reusable switchable gecko‐like adhesive can be fabricated yielding steady high adhesion (F⊥ ≈ 1.25 N/cm2) and friction (F∥ ≈ 2.8 N/cm2) forces when actuated for “gripping”, yet release easily with minimal adhesion (F⊥ ≈ 0.34 N/cm2) and friction (F∥≈ 0.38 N/cm2) forces during detachment or “releasing”, over multiple attachment/detachment cycles, with a relatively small normal preload of 0.16 N/cm2 to initiate the adhesion. These adhesives can also be used to reversibly suspend weights from vertical (e.g., walls), and horizontal (e.g., ceilings) surfaces by simultaneously and judiciously activating anisotropic friction and adhesion forces. This design opens the way for new gecko‐like adhesive surfaces and articulation mechanisms that do not rely on intensive nanofabrication in order to recover the anisotropic tribological property of gecko adhesive pads, albeit with lower adhesive forces compared to geckos.
Healing is an intrinsic ability in the incredibly biodiverse populations of the plant and animal kingdoms created through evolution. Plants and animals approach healing in similar ways but with unique pathways, such as damage containment in plants or clotting in animals. After analyzing the examples of healing and defense mechanisms found in living nature, eight prevalent mechanisms were identified: reversible muscle control, clotting, cellular response, layering, protective surfaces, vascular networks or capsules, exposure, and replenishable functional coatings. Then the relationship between these mechanisms, nature’s best (evolutionary) methods of mitigating and healing damage, and existing technology in self-healing materials are described. The goals of this top-level overview are to provide a framework for relating the behavior seen in living nature to bioinspired materials, act as a resource to addressing the limitations/problems with existing materials, and open up new avenues of insight and research into self-healing materials.
During a marine oil spill, the oil can interact with and potentially wet a variety of surfaces such as corals, skin/shells of marine animals, and bird feathers. We present both qualitative and quantitative data for the interaction of a dodecane droplet submerged in water with surfaces varying in both surface energy and roughness. Flat, unstructured silicon surfaces with water in air contact angles of 0°, 43°, 66°, 87°, 96°, and 108° were tested first to obtain base readings, after which photolithography was used to introduce structured surfaces representative of marine biological systems. We find that the more hydrophilic a surface, the less prone it is to oil contamination. Also, the Cassie-Baxter approximation holds up for submerged oil in water systems and can be used to predict contact angles of oil on solid rough surfaces submerged in an aqueous environment. Furthermore, the addition of surface structure, even on strongly hydrophobic (oleophilic) surfaces, greatly reduced (≈75% reduction in F(adhesion)) a surface's affinity for oil.
The wetting behavior of a surface depends on both its surface chemistry and the characteristics of surface morphology and topography. Adding structure to a flat hydrophobic or oleophobic surface increases the effective contact angle and thus the hydrophobicity or oleophobicity of the surface, as exemplified by the lotus leaf analogy. We describe a simple strategy to introduce micropatterned roughness on surfaces of soft materials, utilizing the template of hexagonally packed pores of breath figures as molds. The generated inverse replicas represent micron scale patterned beadlike protrusions on hydrogel surfaces. This added roughness imparts superoleophobic properties (contact angle of the order of 150° and greater) to an inherently oleophobic flat hydrogel surface, when submerged. The introduced pattern on the hydrogel surface changes morphology as it swells in water to resemble morphologies remarkably analogous to the compound eye. Analysis of the wetting behavior using the Cassie-Baxter approximation leads to estimation of the contact angle in the superoleophobic regime and in agreement with the experimental value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.