PAPA syndrome (pyogenic sterile arthritis, pyoderma gangrenosum, and acne, OMIM #604416) and familial recurrent arthritis (FRA) are rare inherited disorders of early onset, primarily affecting skin and joint tissues. Recurring inflammatory episodes lead to accumulation of sterile, pyogenic, neutrophil-rich material within the affected joints, ultimately resulting in significant destruction. We recently localized the genes for PAPA syndrome and FRA to chromosome 15q and suggested that they are the same disorder. We have now established this by the identification of co-segregating disease-causing mutations in the CD2-binding protein 1 (CD2BP1; GenBank accession no XM 044569) gene in the two reported families with this disorder. E250Q or A230T amino acid substitutions occur within a domain highly homologous to yeast cleavage furrow-associated protein CDC15. CD2BP1 and its murine ortholog, proline-serine-threonine phosphatase interacting protein (PSTPIP1), are adaptor proteins known to interact with PEST-type protein tyrosine phosphatases (PTP). Yeast two-hybrid assays demonstrate severely reduced binding between PTP PEST and both the E250Q and A230T mutant proteins. Previous evidence supports the integral role of CD2BP1 and its interacting proteins in actin reorganization during cytoskeletal-mediated events. We hypothesize that the disease-causing mutations that we have identified compromise physiologic signaling necessary for the maintenance of proper inflammatory response. Accordingly we suggest classification of PAPA syndrome as an autoinflammatory disease. This CD2BP1-mediated biochemical pathway(s) may function in common inflammatory disorders with apparent etiological overlap, such as rheumatoid arthritis and inflammatory bowel disease.
Idiopathic scoliosis (IS) is the most common spinal deformity in children, and its etiology is unknown. To refine the search for genes underlying IS susceptibility, we ascertained a new cohort of 52 families and conducted a follow-up study of genomewide scans that produced evidence of linkage and association with 8q12 loci (multipoint LOD 2.77; P=.0028). Further fine mapping in the region revealed significant evidence of disease-associated haplotypes (P<1.0 x 10-4) centering over exons 2-4 of the CHD7 gene associated with the CHARGE (coloboma of the eye, heart defects, atresia of the choanae, retardation of growth and/or development, genital and/or urinary abnormalities, and ear abnormalities and deafness) syndrome of multiple developmental anomalies. Resequencing CHD7 exons and conserved intronic sequence blocks excluded coding changes but revealed at least one potentially functional polymorphism that is overtransmitted (P=.005) to affected offspring and predicts disruption of a caudal-type (cdx) transcription-factor binding site. Our results identify the first gene associated with IS susceptibility and suggest etiological overlap between the rare, early-onset CHARGE syndrome and common, later-onset IS.
Objective. To localize the gene for familial recurrent arthritis via a genome-wide linkage scan in an extended kindred with the disease.Methods. A 3-generation family in which 9 members were diagnosed with juvenile idiopathic arthritis (JIA) was ascertained. In this family the disease was of very early onset and included episodic inflammation leading to eventual destruction of joints, muscle, and skin. We treated this disorder as a distinct clinical entity that we have named "familial recurrent arthritis." A genome-wide linkage scan with polymorphic microsatellites at 10-15-cM resolution was initiated.Results. The genome-wide scan generated a maximum 2-point logarithm of odds score with D15S211 (Z max ؍ 3.27 at max ؍ 0.0010). Haplotype reconstruction defined a candidate region of ϳ20 cM flanked proximally by D15S983 and distally by D15S127 on human chromosome 15.Conclusion. A gene for familial recurrent arthritis was localized to 15q22-24, as a result of a genomewide linkage scan in a large, multiply affected kindred.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.