PDS 70b is a recently discovered and directly imaged exoplanet within the wide ( 40 au) cavity around PDS 70 . Ongoing accretion onto the central star suggests that accretion onto PDS 70b may also be ongoing. We present the first high contrast images at Hα (656 nm) and nearby continuum (643 nm) of PDS 70 utilizing the MagAO system. The combination of these filters allows for the accretion rate of the young planet to be inferred, as hot infalling hydrogen gas will emit strongly at Hα over the optical continuum. We detected a source in Hα at the position of PDS 70b on two sequential nights in May 2018, for which we establish a false positive probability of <0.1%. We conclude that PDS 70b is a young, actively accreting planet. We utilize the Hα line luminosity to derive a mass accretion rate ofṀ = 10 −8±1 M Jup /yr, where the large uncertainty is primarily due to the unknown amount of optical extinction from the circumstellar and circumplanetary disks. PDS 70b represents the second case of an accreting planet interior to a disk gap, and is among the early examples of a planet observed during its formation. Subject headings: Stars: pre-main sequence (PDS 70) -planets and satellites: formation -planets and satellites: detection -planet-disk interactions
Six planetary nebulae (PN) are known in the Kepler space telescope field of view, three newly identified. Of the 5 central stars of PN with useful Kepler data, one, J 193110888+4324577, is a short-period, post common envelope binary exhibiting relativistic beaming effects. A second, the central star of the newly identified PN Pa 5, has a rare O(He) spectral type and a periodic variability consistent with an evolved companion, where the orbital axis is almost aligned with the line of sight. The third PN, NGC 6826 has a fast rotating central star, something that can only be achieved in a merger. Fourth, the central star of the newly identified PN Kn 61, has a PG1159 spectral type and a mysterious semi-periodic light variability which we conjecture to be related to the interplay of binarity with a stellar wind. Finally, the central star of the circular PN A 61 does not appear to have a photometric variability above 2 mmag. With the possible exception of the variability of Kn 61, all other variability behaviour, whether due to binarity or not, would not easily have been detected from the ground. We conclude, based on very low numbers, that there may be many more close binary or close binary products to be discovered with ultra-high precision photometry. With a larger number of high precision photometric observations we will be able to determine how much higher than the currently known 15 per cent, the short period binary fraction for central stars of PN is likely to be.
MagAO-X is an entirely new extreme adaptive optics system for the Magellan Clay 6.5 m telescope, funded by the NSF MRI program starting in Sep 2016. The key science goal of MagAO-X is high-contrast imaging of accreting protoplanets at Hα. With 2040 actuators operating at up to 3630 Hz, MagAO-X will deliver high Strehls (> 70%), high resolution (19 mas), and high contrast (< 1 × 10 −4 ) at Hα (656 nm). We present an overview of the MagAO-X system, review the system design, and discuss the current project status.
Over the last decade, the vector-apodizing phase plate (vAPP) coronagraph has been developed from concept to on-sky application in many high-contrast imaging systems on 8-m class telescopes. The vAPP is an geometric-phase patterned coronagraph that is inherently broadband, and its manufacturing is enabled only by direct-write technology for liquid-crystal patterns. The vAPP generates two coronagraphic PSFs that cancel starlight on opposite sides of the point spread function (PSF) and have opposite circular polarization states. The efficiency, that is the amount of light in these PSFs, depends on the retardance offset from half-wave of the liquid-crystal retarder. Using different liquid-crystal recipes to tune the retardance, different vAPPs operate with high efficiencies (> 96%) in the visible and thermal infrared (0.55 µm to 5 µm). Since 2015, seven vAPPs have been installed in a total of six different instruments, including Magellan/MagAO, Magellan/MagAO-X, Subaru/SCExAO, and LBT/LMIRcam. Using two integral field spectrographs installed on the latter two instruments, these vAPPs can provide lowresolution spectra (R∼30) between 1 m and 5 m. We review the design process, development, commissioning, on-sky performance, and first scientific results of all commissioned vAPPs. We report on the lessons learned and conclude with perspectives for future developments and applications.
MagAO-X is a new "extreme" adaptive optics system for the Magellan Clay 6.5 m telescope which began commissioning in December, 2019. MagAO-X is based around a 2040 actuator deformable mirror, controlled by a pyramid wavefront sensor operating at up to 3.6 kHz. When fully optimized, MagAO-X will deliver high Strehls (> 70%), high resolution (19 mas), and high contrast (< 1 × 10 −4 ) at Hα (656 nm). We present a brief review of the instrument design and operations, and then report on the results of the first-light run.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.