Inspired by water transport in plants, we present a synthetic, microfabricated “leaf” that can scavenge electrical power from evaporative flow. Evaporation at the surface of the device produces flows with velocities up to 1.5 cm/s within etched microchannels. Gas-liquid interfaces within the channels move across an embedded capacitor at this velocity, generating 250 ms, 10–50 pF transient changes in capacitance. If connected to a rectified charge-pump circuit, each capacitive transient can increase the voltage in a 100 μF storage capacitor by ∼2–5 μV. We provide estimates of power density, energy density, and scavenging efficiency.
Femtosecond laser microsurgery is a powerful method for studying cellular function, neural circuits, neuronal injury and neuronal regeneration because of its capability to selectively ablate sub-micron targets in vitro and in vivo with minimal damage to the surrounding tissue. Here, we present a step-by-step protocol for constructing a femtosecond laser microsurgery setup for use with a widely available compound fluorescence microscope. The protocol begins with the assembly and alignment of beam-conditioning optics at the output of a femtosecond laser. Then a dichroic mount is assembled and installed to direct the laser beam into the objective lens of a standard inverted microscope. Finally, the laser is focused on the image plane of the microscope to allow simultaneous surgery and fluorescence imaging. We illustrate the use of this setup by presenting axotomy in Caenorhabditis elegans as an example. This protocol can be completed in 2 d.
The complexity of neurons and neuronal circuits in brain tissue requires the genetic manipulation, labeling, and tracking of single cells. However, current methods for manipulating cells in brain tissue are limited to either bulk techniques, lacking single-cell accuracy, or manual methods that provide single-cell accuracy but at significantly lower throughputs and repeatability. Here, we demonstrate high-throughput, efficient, reliable, and combinatorial delivery of multiple genetic vectors and reagents into targeted cells within the same tissue sample with single-cell accuracy. Our system automatically loads nanoliter-scale volumes of reagents into a micropipette from multiwell plates, targets and transfects single cells in brain tissues using a robust electroporation technique, and finally preps the micropipette by automated cleaning for repeating the transfection cycle. We demonstrate multi-colored labeling of adjacent cells, both in organotypic and acute slices, and transfection of plasmids encoding different protein isoforms into neurons within the same brain tissue for analysis of their effects on linear dendritic spine density. Our platform could also be used to rapidly deliver, both ex vivo and in vivo, a variety of genetic vectors, including optogenetic and cell-type specific agents, as well as fast-acting reagents such as labeling dyes, calcium sensors, and voltage sensors to manipulate and track neuronal circuit activity at single-cell resolution.
We have designed, fabricated and characterized large displacement distributed-force polymer actuators driven only by the surface tension of water. The devices were inspired by the hygroscopic spore dispersal mechanism in fern sporangia. Microdevices were fabricated through a single mask process using a commercial photo-patternable silicone polymer to mimic the mechanical characteristics of plant cellulose. An analytical model for predicting the microactuator behavior was developed using the principle of virtual work, and a variety of designs were simulated and compared to the empirical data. Fabricated devices experienced tip deflections of more than 3.5 mm and angular rotations of more than 330 • due to the surface tension of water. The devices generated forces per unit length of 5.75 mN m −1 to 67.75 mN m −1 . We show initial results indicating that the transient water-driven deflections can be manipulated to generate devices that self-assemble into stable configurations. Our model shows that devices should scale well into the submicron regime. Lastly, the actuation mechanism presented may provide a robust method for embedding geometry-programmable and environment-scavenged force generation into common materials.
Therapies based on biologics involving delivery of proteins, DNA, and RNA are currently among the most promising approaches. However, although large combinatorial libraries of biologics and delivery vehicles can be readily synthesized, there are currently no means to rapidly characterize them in vivo using animal models. Here, we demonstrate high-throughput in vivo screening of biologics and delivery vehicles by automated delivery into target tissues of small vertebrates with developed organs. Individual zebrafish larvae are automatically oriented and immobilized within hydrogel droplets in an array format using a microfluidic system, and delivery vehicles are automatically microinjected to target organs with nearly perfect repeatability and precision. We screened a library of lipid-like delivery vehicles for their ability to facilitate the expression of protein-encoding RNAs in the central nervous system. We discovered delivery vehicles that are effective in both larval zebrafish and rats. Our results showed that the in vivo zebrafish model can be significantly more predictive of both false positives and false negatives in mammals than in vitro mammalian cell culture assays. Our screening results also suggest certain structure-activity relationship, which can potentially be applied to design novel delivery vehicles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.