An Electronic Laboratory Notebook (ELN) combining features, including data archival, collaboration tools, and green and sustainability metrics for organic chemistry, is presented. AI4Green is a web-based application, available as open-source code and free to use. It offers the core functionality of an ELN, namely the ability to store reactions securely and share them among different members of a research team. As users plan their reactions and record it in the ELN, green and sustainable chemistry is encouraged by automatically calculating green metrics and color-coding hazards, solvents, and reaction conditions. The interface links a database constructed from data extracted from PubChem, enabling the automatic collation of information for reactions. The application's design facilitates the development of auxiliary sustainability applications, such as our Solvent Guide. As more reaction data is captured, subsequent work will include providing "intelligent" sustainability suggestions to the user.
An Electronic Laboratory Notebook (ELN) combining features, including data archival, collaboration tools, and green and sustainability metrics for organic chemistry, is presented. AI4Green is a web-based application, available as open-source code and free to use. It offers the core functionality of an ELN, namely, the ability to store reactions securely and share them among different members of a research team. As users plan their reactions and record them in the ELN, green and sustainable chemistry is encouraged by automatically calculating green metrics and colorcoding hazards, solvents, and reaction conditions. The interface links a database constructed from data extracted from PubChem, enabling the automatic collation of information for reactions. The application's design facilitates the development of auxiliary sustainability applications, such as our Solvent Guide. As more reaction data are captured, subsequent work will include providing "intelligent" sustainability suggestions to the user.
Machine learning models were developed to predict product formation from time-series reaction data for ten Buchwald-Hartwig coupling reactions. The data was provided by DeepMatter and was collected in their DigitalGlassware cloud platform. The reaction probe has 12 sensors to measure properties of interest, including temperature, pressure, and colour. Colour was a good predictor of product formation for this reaction and machine learning models were able to learn which of the properties were important. Predictions for the current product formation (in terms of % yield) had a mean absolute error of 1.2%. For predicting 30, 60 and 120 minutes ahead the error rose to 3.4, 4.1 and 4.6%, respectively. The work here presents an example into the insight that can be obtained from applying machine learning methods to sensor data in synthetic chemistry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.