Given a suitable dataset, transfer learning using deep convolutional neural networks is an effective method to develop a system to detect and classify objects. Despite having models pretrained on large general-purpose datasets, the requirement to manually label an application-specific dataset remains a limiting factor in system development. We consider this wider problem in the context of the purity analysis of canola seeds, where end users wish to distinguish species of interest from contaminants in images taken with optical microscopes. We use a Detector network, trained only to detect seeds, to help label the dataset used to train an Analyzer network, capable of both seed detection and classification. We present results, over three experiments that involve 25 contaminant species, including Primary and Secondary Noxious Weed Seeds (as per the Canadian Weed Seeds Order), to validate our incremental approach. We also compare the proposed system to competing ones in a literature review.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.