The Notch signaling pathway is fundamental to proper cardiovascular development and is now recognized as an important player in tumor angiogenesis. Two key Notch ligands have been implicated in tumor angiogenesis, Delta-like 4 and Jagged1. We introduce the proteins and how they work in normal developing vasculature and then discuss differing models describing the action of these Notch ligands in tumor angiogenesis. Endothelial Dll4 expression activates Notch resulting in restriction of new sprout development; for instance, in growing retinal vessels. In agreement with this activity, inhibition of Dll4-mediated Notch signaling in tumors results in hypersprouting of nonfunctional vasculature. This Dll4 inhibition may paradoxically lead to increased angiogenesis but poor tumor growth because the newly growing vessels are not functional. In contrast, Jagged1 has been described as a Notch ligand expressed in tumor cells that can have a positive influence on tumor angiogenesis, possibly by activating Notch on tumor endothelium. A novel Notch inhibitor, the Notch1 decoy, which blocks both Dll4 and Jagged1 has been recently shown to restrict tumor vessel growth. We discuss these models and speculate on therapeutic approaches.
Treatment of patients with human immunodeficiency virus (HIV) protease inhibitors such as ritonavir can result in increases in CD4 ؉ T-cell counts that are independent of a reduction in HIV-1 viral load. This lack of correlation between the 2 has led to the identification of additional effects of ritonavir that potentially alter HIV disease pathogenesis. Our previous studies indicated that ritonavir directly affects immune cell activation, proliferation, and susceptibility to apoptosis. We show here that ritonavir inhibited the activation and proliferation of primary endothelial cells and decreased the produc-
The Capillary Morphogenesis Gene 2 (CMG2) gene encodes an Anthrax toxin receptor (ANTXR2) but the normal physiological function is not known. ANTXR2/CMG2 was originally identified as a result of up-regulation during capillary morphogenesis of endothelial cells cultured in vitro. We explored the hypothesis that key steps of the angiogenic process are either dependent or are influenced by ANTXR2/CMG2 activity. We describe the expression pattern of ANTXR2/CMG2 in several murine tissues and in normal breast and breast tumors. Endothelial expression was found in all of the tissues analyzed, in cultured endothelial cells and in breast tumor vessels; however ANTXR2/CMG2 expression was not restricted to this cell type. To assess potential angiogenic function, we utilized RNA interference to achieve significant reduction of ANTXR2/CMG2 expression in cultured human umbilical venous endothelial cells. Reduced ANTXR2/CMG2 expression resulted in significant inhibition of proliferation and reduced capacity of endothelial cells to form capillary-like networks in vitro, while overexpression of ANTXR2/CMG2 in HUVEC increased proliferation and capillary-like network formation. Little change in migration of endothelial cells was observed upon knockdown or overexpression. We conclude that ANTXR2/CMG2 functions to promote endothelial proliferation and morphogenesis during sprouting angiogenesis, consistent with the endothelial expression of ANTXR2/CMG2 in several vascular beds.
Key Points
An NUP98-PHF23 fusion collaborates with acquired Bcor and Jak/Stat mutations to produce a pro–B-1 ALL. Gene expression profile of murine pro–B-1 ALL resembles that of a subset of human ALL, suggesting some human ALLs arise from pro–B-1 B cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.