Aims: To determine the size distribution of the spores of Bacillus anthracis, and compare its size with other Bacillus species grown and sporulated under similar conditions. Methods and Results: Spores from several Bacillus species, including seven strains of B. anthracis and six close neighbours, were prepared and studied using identical media, protocols and instruments. Here, we report the spore length and diameter distributions, as determined by transmission electron microscopy (TEM). We calculated the aspect ratio and volume of each spore. All the studied strains of B. anthracis had similar diameter (mean range between 0·81 ± 0·08 μm and 0·86 ± 0·08 μm). The mean lengths of the spores from different B. anthracis strains fell into two significantly different groups: one with mean spore lengths 1·26 ± 0·13 μm or shorter, and another group of strains with mean spore lengths between 1·49 and 1·67 μm. The strains of B. anthracis that were significantly shorter also sporulated with higher yield at relatively lower temperature. The grouping of B. anthracis strains by size and sporulation temperature did not correlate with their respective virulence. Conclusions: The spores of Bacillus subtilis and Bacillus atrophaeus (previously named Bacillus globigii), two commonly used simulants of B. anthracis, were considerably smaller in length, diameter and volume than all the B. anthracis spores studied. Although rarely used as simulants, the spores of Bacillus cereus and Bacillus thuringiensis had dimensions similar to those of B. anthracis. Significance and Impact of the Study: Spores of nonvirulent Bacillus species are often used as simulants in the development and testing of countermeasures for biodefence against B. anthracis. The data presented here should help in the selection of simulants that better resemble the properties of B. anthracis, and thus, more accurately represent the performance of collectors, detectors and other countermeasures against this threat agent.
Dried blood spots (DBS) are simpler to prepare, store, and transport than plasma or serum and may represent a good alternative for drug resistance genotyping, particularly in resource-limited settings. However, the utility of DBS for drug resistance testing is unknown. We investigated the efficiency of amplification of large human immunodeficiency virus type 1 (HIV-1) pol fragments (1,023 bp) from DBS stored at different temperatures, the type of amplified product(s) (RNA and/or DNA), and the similarity between plasma and DBS sequences. We evaluated two matched plasma/DBS panels stored for 5 to 6 years at several temperatures and 40 plasma/DBS specimens collected from untreated persons in Cameroon and stored for 2 to 3 years at ؊20°C. The amplification of HIV-1 pol was done using an in-house reverse transcriptase-nested PCR assay. Reactions were done with and without reverse transcription to evaluate the contribution of HIV DNA to pol sequences from DBS. Amplification was successful for the DBS samples stored for 5 to 6 years at ؊20°C or at ؊70°C but not for those stored at room temperature. Thirty-seven of the 40 (92.5%) DBS from Cameroon were amplifiable, including 8/11 (72.7%) with plasma virus loads of <10,000 RNA copies/ml and all 29 with plasma virus loads of >10,000. Proviral DNA contributed significantly to DBS sequences in 24 of the 37 (65%) specimens from Cameroon. The overall similarity between plasma and DBS sequences was 98.1%. Our results demonstrate the feasibility of DBS for drug resistance testing and indicate that ؊20°C is a suitable temperature for long-term storage of DBS. The amplification of proviral DNA from DBS highlights the need for a wider evaluation of the concordance of resistance genotypes between plasma and DBS.The introduction of highly active antiretroviral therapy and the demonstration of dramatic improvements in human immunodeficiency virus (HIV)-and AIDS-related mortality and morbidity in North America and Europe have fueled international efforts to expand access to care and treatment in lessdeveloped countries. Several major initiatives to provide treatment in resource-limited settings, including the U.S. President's Emergency Plan for AIDS Relief and the Global Fund against AIDS, TB and Malaria, are now in progress (16). The implementation of these programs requires the development of appropriate and effective patient-monitoring systems, including surveillance for antiretroviral drug resistance. Sentinel drug resistance surveillance systems are important public health tools that can provide information on trends in the prevalence of resistance at the population level and can be used to modify treatment guidelines.Plasma and serum are considered the preferred specimen types for HIV type 1 (HIV-1) drug resistance testing. However, these types of specimens are not optimal in resource-limited settings where the equipment necessary for PCR amplification and sequencing may not be available at collection sites and resistance testing requires transportation of the samples to a refer...
To investigate whether human immunodeficiency virus type 1 pol gene mutations are selected during prolonged 2',3'-dideoxycytidine (ddC) therapy, we used the polymerase chain reaction to amplify a portion of the reverse transcriptase segment of the pol gene from the peripheral blood mononuclear cell DNA of a patient with AIDS before and after an 80-week course of ddC therapy. The consensus sequence from the second sample contained a unique double mutation (ACT to GAT) in the codon for reverse transcriptase amino acid 69, causing substitution of aspartic acid (Asp) for the wild-type threonine (Thr). A mutation (ACA to ATA) also occurred in the codon for position 165, causing substitution of isoleucine (Ile) for Thr. The GAT (Asp) codon was introduced into the pol gene of a molecular clone of human immunodeficiency virus via site-directed mutagenesis. Following transfection, mutant and wild-type viruses were tested for susceptibility to ddC by a plaque reduction assay. The mutant virus was fivefold less susceptible to ddC than the wild type; crossresistance to 3'-azido-3'-deoxythymidine or 2'3'-dideoxyinosine was not found. The lle-165 mutation did not confer additional ddC resistance. The Asp-69 substitution may have contributed to the generation of resistant virus in this patient.
The increasing prevalence of acquired and transmitted HIV-1 drug resistance is an obstacle to successful antiretroviral therapy (ART) in the low- and middle-income countries (LMICs) hardest hit by the HIV-1 pandemic. Genotypic drug resistance testing could facilitate the choice of initial ART in areas with rising transmitted drug resistance (TDR) and enable care-providers to determine which individuals with virological failure (VF) on a first- or second-line ART regimen require a change in treatment. An inexpensive near point-of-care (POC) genotypic resistance test would be useful in settings where the resources, capacity, and infrastructure to perform standard genotypic drug resistance testing are limited. Such a test would be particularly useful in conjunction with the POC HIV-1 viral load tests that are currently being introduced in LMICs. A POC genotypic resistance test is likely to involve the use of allele-specific point mutation assays for detecting drug-resistance mutations (DRMs). This study proposes that two major nucleoside reverse transcriptase inhibitor (NRTI)-associated DRMs (M184V and K65R) and four major NNRTI-associated DRMs (K103N, Y181C, G190A, and V106M) would be the most useful for POC genotypic resistance testing in LMIC settings. One or more of these six DRMs was present in 61.2% of analyzed virus sequences from ART-naïve individuals with intermediate or high-level TDR and 98.8% of analyzed virus sequences from individuals on a first-line NRTI/NNRTI-containing regimen with intermediate or high-level acquired drug resistance. The detection of one or more of these DRMs in an ART-naïve individual or in a individual with VF on a first-line NRTI/NNRTI-containing regimen may be considered an indication for a protease inhibitor (PI)-containing regimen or closer virological monitoring based on cost-effectiveness or country policy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.