Manganese (Mn) in drinking water can cause aesthetic and operational problems. Mn removal is necessary and often has major implications for treatment train design. This review provides an introduction to Mn occurrence and summarizes historic and recent research on removal mechanisms practiced in drinking water treatment. Manganese is removed by physical, chemical, and biological processes or by a combination of these methods. Although physical and chemical removal processes have been studied for decades, knowledge gaps still exist. The discovery of undesirable by-products when certain oxidants are used in treatment has impacted physical-chemical Mn removal methods. Understanding of the microorganisms present in systems that practice biological Mn removal has increased in the last decade as molecular methods have become more sophisticated, resulting in increasing use of biofiltration for Mn removal. The choice of Mn removal method is very much impacted by overall water chemistry and co-contaminants and must be integrated into the overall water treatment facility design and operation.
This study investigated the impacts of buffer ions, natural organic matter (NOM), and particulate Fe(III) on ferrate(VI) decomposition and characterized Fe(VI) decomposition kinetics and exposure in various waters. Homogeneous and heterogeneous Fe(VI) decomposition can be described as a second- and first-order reaction with respect to Fe(VI), respectively. Fe(VI) decay was catalyzed by Fe(VI) decomposition products. Solutes capable of forming complexes with iron hydroxides retarded Fe(VI) decay. Fractionation of the resulting solutions from Fe(VI) self-decay and ferric chloride addition in borate- and phosphate-buffered waters showed that phosphate could sequester Fe(III). The nature of the iron precipitate from Fe(VI) decomposition was different from that of freshly precipitated ferric hydroxide from ferric chloride solutions. The stabilizing effects of different solutes on Fe(VI) are in the following order: phosphate > bicarbonate > borate. The constituents of colored and alkaline waters (NOM and bicarbonate) inhibited the catalytic effects of Fe(VI) decomposition products and stabilized Fe(VI) in natural waters. Because of the stabilizing effects of solutes, moderate doses of Fe(VI) added to natural waters at pH 7.5 resulted in exposures that have been shown to be effective for inactivation of target pathogens. Preformed ferric hydroxide was less effective than freshly dosed ferric chloride in accelerating Fe(VI) decomposition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.