The β2 integrin CD11a is involved in T cell-APC interactions, but the roles of CD11b, CD11c, and CD11d in such interactions have not been examined. To evaluate the roles of each CD11/CD18 integrin in T cell-APC interactions, we tested the ability of splenocytes of CD11-knockout (KO) mice to respond to staphylococcal enterotoxins (SEs), a commonly used superantigen. The defect in T cell proliferation with SEA was more severe in splenocytes from mice deficient in CD18, CD11b, or CD11d than in CD11a-deficient splenocytes, with a normal response in CD11c-deficient splenocytes. Mixing experiments showed that the defect of both CD11b-KO and CD11d-KO splenocytes was, unexpectedly, in T cells rather than in APC. Cytometric analysis failed to detect CD11b or CD11d on resting or activated T cells or on thymocytes of wild-type adult mice, nor did Abs directed to these integrins block responses in culture, suggesting that T cells educated in CD11b-KO or CD11d-KO mice were phenotypically altered. Consistent with this hypothesis, T cells from CD11b-KO and CD11d-KO splenocytes exhibited reduced intensity of CD3 and CD28 expression and decreased ratios of CD4/CD8 cells, and CD4+ T cells were reduced among CD11b-KO and CD11d-KO thymocytes. CD11b and CD11d were coexpressed on a subset of early wild-type fetal thymocytes. We postulate that transient thymocyte expression of both CD11b and CD11d is nonredundantly required for normal thymocyte and T cell development, leading to phenotypic changes in T cells that result in the reduced response to SE stimulation.
Mice deficient in CD18, which lack all four CD11 integrins, have leukocytosis and increased susceptibility to bacterial infection. To determine the effect of deficiencies in LFA-1 (CD11a/CD18) or Mac-1 (CD11b/CD18) on host defense against systemic bacterial infection, knockout mice were inoculated i.p. with Streptococcus pneumoniae. Increased mortality occurred in both LFA-1−/− (15 of 17 vs 13 of 35 in wild type (WT), p < 0.01) and Mac-1−/− (17 of 34 vs 6 of 25, p < 0.01) mice. All deaths in LFA-1−/− mice occurred after 72 h, whereas most deaths in Mac-1−/− mice occurred within 24–48 h. At 24 h, 21 of 27 Mac-1−/− mice were bacteremic, vs 15 of 25 WT (p = 0.05); no difference was observed between LFA-1−/− and WT. Increased bacteria were recovered from Mac-1−/− spleens at 2 h (p = 0.03) and 6 h (p = 0.002) and from livers (p = 0.001) by 6 h. No difference was observed at 2 h in LFA-1−/− mice, but by 6 h increased bacteria were recovered from spleens (p = 0.008) and livers (p = 0.04). Baseline and peak leukocyte counts were similar between Mac-1−/− and WT, but elevated in LFA-1−/−. At 8 h, peritoneal neutrophils were increased in Mac-1−/−, but not significantly different in LFA-1−/−. Histopathologically, at 24 h Mac-1−/− animals had bacteremia and lymphoid depletion, consistent with sepsis. LFA-1−/− mice had increased incidence of otitis media and meningitis/encephalitis vs WT at 72 and 96 h. Both Mac-1 and LFA-1 play important but distinct roles in host defense to S. pneumoniae.
To understand the integrin requirements of T-helper (T(H)) effector subsets, we investigated the contribution of CD18 (beta(2) integrin) to T(H)1 and T(H)2 function in vitro and in relevant disease models. CD18-deficient (Itgb2(-/-)) T cells showed largely normal in vitro function. Compared with wild-type mice, Itgb2(-/-) mice were better able to resolve Leishmania major infection and generated a superior T(H)1 immune response, as assessed from draining lymph nodes. In contrast, T(H)2-dependent allergic lung disease was markedly impaired in mutant mice. In both models, development of T(H)1 and T(H)2 cells in spleens was normal, but accumulation of T(H)2 (not T(H)1) cells at inflammatory sites was reduced. Thus, CD18 is selectively required for T(H)2, but not T(H)1, homing and has a minimal influence on T-effector development. These findings suggest a new integrin-based therapeutic approach in which the outcomes of diverse diseases may be favorably influenced by altering the homing of T(H)2 cells.
Integrin CD18, a component of the LFA-1 complex that also includes CD11a, is essential for Th2, but not Th1, cell homing, but the explanation for this phenomenon remains obscure. In this study, we investigate the mechanism by which Th2 effector responses require the LFA-1 complex. CD11a-deficient T cells showed normal in vitro differentiation and function. However, Th2 cell-dependent allergic lung disease was markedly reduced in CD11a null mice and wild-type mice given LFA-1 inhibitors, whereas control of infection with Leishmania major, a Th1-dependent response, was enhanced. In both disease models, recruitment of IL-4-, but not IFN-γ-secreting cells to relevant organs was impaired, as was adhesion of Th2 cells in vitro. These diverse findings were explained by the markedly reduced expression of CD29, an alternate homing integrin, on Th2, but not Th1, cells, which precludes Th2 homing in the absence of CD11a. Thus, murine Th1 and Th2 cells use distinct integrins for homing, suggesting novel opportunities for integrin-based therapeutic intervention in diverse human ailments influenced by Th2 cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.