The most dramatic shifts in the classification relative to previous works concern the groups that have traditionally been included in the Chytridiomycota and Zygomycota. The Chytridiomycota is retained in a restricted sense, with Blastocladiomycota and Neocallimastigomycota representing segregate phyla of flagellated Fungi. Taxa traditionally placed in Zygomycota are distributed among Glomeromycota and several subphyla incertae sedis, including Mucoromycotina, Entomophthoromycotina, Kickxellomycotina, and Zoopagomycotina. Microsporidia are included in the Fungi, but no further subdivision of the group is proposed. Several genera of 'basal' Fungi of uncertain position are not placed in any higher taxa, including Basidiobolus, Caulochytrium, Olpidium, and Rozella.
Metarhizium anisopliae, the type species of the anamorph entomopathogenic genus Metarhizium, is currently composed of four varieties, including the type variety, and had been demonstrated to be closely related to M. taii, M. pingshaense and M. guizhouense. In this study we evaluate phylogenetic relationships within the M. anisopliae complex, identify monophyletic lineages and clarify the species taxonomy. To this end we have employed a multigene phylogenetic approach using near-complete sequences from nuclear encoded EF-1alpha, RPB1, RPB2 and beta-tubulin gene regions and evaluated the morphology of these taxa, including ex-type isolates whenever possible. The phylogenetic and in some cases morphological evidence supports the monophyly of nine terminal taxa in the M. anisopliae complex that we recognize as species. We propose to recognize at species rank M. anisopliae, M. guizhouense, M. pingshaense, M. acridum stat. nov., M. lepidiotae stat. nov. and M. majus stat. nov. In addition we describe the new species M. globosum and M. robertsii, resurrect the name M. brunneum and show that M. taii is a later synonym of M. guizhouense.
The genus Metarhizium historically refers to green-spored asexual insect pathogenic fungi. Through culturing and molecular methods, Metarhizium has been linked to Metacordyceps sexual states. Historically fungal nomenclature has allowed separate names for the different life stages of pleomorphic fungi. However, with the move to one name for one fungus regardless of life stage, there is a need to determine which name is correct. For Metarhizium the situation is complicated by the fact that Metacordyceps sexual states are interspersed among additional asexual genera, including Pochonia, Nomuraea and Paecilomyces. Metarhizium has priority as the earliest available name, but delimiting the boundaries of this genus remains problematic. To clarify relationships among these taxa we have obtained representative material for each genus and established a molecular dataset of the protein-coding genes BTUB, RPB1, RPB2 and TEF. The resulting phylogeny supports Metarhizium combining the majority of species recognized in Metacordyceps as well as the green-spored Nomuraea species and those in the more recently described genus Chamaeleomyces. Pochonia is polyphyletic, and we restrict the definition of this genus to those species forming a monophyletic clade with P. chlamydosporia, and the excluded species are transferred to Metapochonia gen. nov. It is our hope that this unified concept of sexual and asexual states in Metarhizium will foster advances in communication and understanding the unique ecologies of the associated species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.