We addressed the question of whether furin is the endoprotease primarily responsible for processing the human immunodeficiency virus type I (HIV-I) envelope protein gp160 in mammalian cells. The furin-deficient Chinese hamster ovary (CHO)-K1 strain RPE.40 processed gp160 as efficiently as wild-type CHO-K1 cells in vivo. Although furin can process gp160 in vitro, this processing is probably not physiologically relevent, because it occurs with very low efficiency. PACE4, a furin homologue, allowed processing of gp160 when both were expressed in RPE.40 cells. Further, PACE4 participated in the activation of a calcium-independent protease activity in RPE.40 cells, which efficiently processed the gp160 precursor in vitro. This calcium-independent protease activity was not found in another furin-deficient cell strain, 7.P15, selected from the monkey kidney cell line COS-7.
RR to AA mutant, which abolished both furin recognition sites. Moreover, the zymogens were not converted into their active forms in two furindeficient mammalian cell lines; co-expression of hADAM19 and furin in these two cell lines restored zymogen activation. Finally, co-localization between furin and hADAM19 was identified in the endoplasmic reticulumGolgi complex and/or the trans-Golgi network. This report is the first thorough investigation of the intracellular activation of adamalysin 19, demonstrating that furin activated pro-hADAM19 in the secretory pathway via one of the two consecutive furin recognition sites.The adamalysin, ADAM 1 (for a disintegrin and metalloprotease), or metalloprotease/disintegrin/cysteine-rich family includes proteins containing disintegrin-and metalloproteaselike domains. These proteinases are involved in diverse processes, such as development, cell-cell interaction, and protein ectodomain shedding (1-5). For example, ADAM10/kuzbanian (KUZ) and ADAM17/tumor necrosis factor-␣ convertase play key roles in the processing of both Notch1 receptor, which is critical in development, and amyloid precursor protein, which is related to the pathogenesis of Alzheimer's disease (3,4,6). Six different ADAMs, ADAM2, -9, -12, -15, -23, and -28, are able to interact with integrins such as ␣
RPE.40 mutant cells differ from wild-type Chinese hamster ovary (CHO-K1) cells in their increased resistance to Pseudomonas exotoxin A and their inability to process the insulin proreceptor and certain viral envelope proproteins. Northern analysis revealed that RPE.40 cells maintained a substantially lower steady-state level of 4.0 kb fur mRNA than did CHO-K1 cells. Analysis of fur cDNAs showed that RPE.40 cells were diploid at the fur locus, and RPE.40 cells had a Cys (TGC) to Tyr (TAC) mutation in codon 196 of one allele (allele I). Approximately 25-30% of the CHO-K1 cells were also heterozygous (Tyr/Cys) at codon 196, and pre-mRNAs transcribed from the second allele (allele II) in RPE.40 cells were defectively spliced. All other pre-mRNAs were correctly spliced. Rapid turnover of defectively spliced transcripts may account for the reduced steady-state level of fur mRNA observed in RPE.40 cells. Our results provide a mechanistic basis for the endoprotease-deficient phenotype of RPE.40 cells.
PACE4 is a member of the eukaryotic subtilisin-like endoprotease family. The expression of human PACE4 in RPE.40 cells (furin-null mutants derived from Chinese hamster ovary K1 cells) resulted in the rescue of a number of wild-type characteristics, including sensitivity to Sindbis virus and the ability to process the low-density-lipoprotein receptor-related protein. Expression of PACE4 in these cells failed to restore wild-type sensitivity to Pseudomonas exotoxin A. Co-expression of human PACE4 in these cells with either a secreted form of the human insulin pro-receptor or the precursor form of von Willebrand factor resulted in both proproteins being processed; RPE.40 cells were unable to process either precursor protein in the absence of co-expressed PACE4. Northern analysis demonstrated that untransfected RPE.40 cells express mRNA species for four PACE4 isoforms, suggesting that any endogenous PACE4 proteins produced by these cells are either non-functional or sequestered in a compartment outside of the secretory pathway. In experiments in vitro, PACE4 processed diphtheria toxin and anthrax toxin protective antigen, but not Pseudomonas exotoxin A. The activity of PACE4 in vitro was Ca2+-dependent and, unlike furin, was sensitive to temperature changes between 22 and 37 °C. RPE.40 cells stably expressing human PACE4 secreted an endoprotease with the same Ca2+ dependence and temperature sensitivity as that observed in membrane fractions of these cells assayed in vitro. These results, in conjunction with other published work, demonstrate that PACE4 is an endoprotease with more stringent substrate specificity and more limited operating parameters than furin.
An aspartyl protease, Beta‐Site APP cleaving enzyme (BACE), was identified as the β‐secretase responsible for generating the Amyloid β protein that is believed to cause Alzheimer's disease. BACE has a short propeptide domain that is absent in the mature enzyme because of proteolytic cleavage after the sequence RLPR. This sequence is a predicted substrate for proprotein convertases such as furin. To determine the role of furin and other proprotein convertases, we expressed proBACE in a furin‐deficient mutant Chinese hamster ovary (CHO‐K1) line, RPE.40. ProBACE signal was higher in RPE.40 than in the CHO‐K1 parent, which confirmed that furin plays a role in propeptide removal. However, two independent approaches showed that proBACE is cleaved to mature BACE in RPE.40: proBACE was rapidly turned over in RPE.40 although total BACE was stable, and decanoyl‐RVKR‐chloromethylketone, an inhibitor of the proprotein convertase family, substantially increased proBACE levels in both RPE40 and CHO‐K1. Transient transfection shows that furin, PACE4, PC5/6, and PC7 mediate BACE cleavage in vivo, at least when overexpressed. RPE.40 is proficient in BACE activity despite its furin deficiency. Therefore, our finding that proBACE is cleaved in this mutant leaves open the possibility that maturation is an important regulatory step and a therapeutic target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.