The specificity of carbohydrate transporters towards their substrates poses a significant challenge for the development of molecular probes to monitor sugar uptake in cells for biochemical and biomedical applications. Herein we report a new set of coumarin-based fluorescent sugar conjugates applicable for the analysis of fructose uptake due to their free passage through the fructose-specific transporter GLUT5. The reported probes cover a broad range of the fluorescence spectrum providing essential tools for the evaluation of fructose transport capacity in live cells.
Facilitative carbohydrate transporters-Gluts-have received wide attention over decades due to their essential role in nutrient uptake and links with various metabolic disorders, including diabetes, obesity, and cancer. Endeavors directed towards understanding the mechanisms of Glut-mediated nutrient uptake have resulted in a multidisciplinary research field spanning protein chemistry, chemical biology, organic synthesis, crystallography, and biomolecular modeling. Gluts became attractive targets for cancer research and medicinal chemistry, leading to the development of new approaches to cancer diagnostics and providing avenues for cancer-targeting therapeutics. In this review, the current state of knowledge of the molecular interactions behind Glut-mediated sugar uptake, Glut-targeting probes, therapeutics, and inhibitors are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.