The REL gene is amplified in many human B-cell lymphomas and we have previously shown that expression of REL from a retroviral vector can malignantly transform chicken spleen cells in vitro. To identify REL protein functions necessary for malignant transformation, we have performed deletion analysis on REL sequences encoding residues of two C-terminal subdomains that are involved in transcriptional activation. We find that deletion of both Cterminal transactivation subdomains abolishes the ability of REL to transform chicken spleen cells in vitro. In contrast, deletion of either transactivation subdomain alone, which reduces the transactivation ability of REL, enhances the transforming activity of REL. Transforming REL mutants missing C-terminal sequences can also be selected at a low frequency in vitro. The REL transactivation domain can be functionally replaced in transformation assays by a portion of the VP16 transactivation domain that activates at a level similar to RELtransforming mutants. We also find that deletion of 29 C-terminal amino acids causes the subcellular localization of REL to change from cytoplasmic to nuclear in chicken embryo fibroblasts. In contrast, wild-type REL and all transforming REL mutants are located primarily in the cytoplasm of transformed spleen cells. Nevertheless, treatment of transformed spleen cells with leptomycin B causes wild-type REL and two REL mutants to relocalize to the nucleus, and nuclear extracts from these transformed cells contain REL DNA-binding activity. Taken together, these results suggest the following: (1) that REL must activate transcription to transform cells in vitro; (2) that a reduced level of transactivation enhances the oncogenicity of REL; (3) that REL shuttles from the cytoplasm to the nucleus in transformed chicken spleen cells; and (4) that mutations in REL, in addition to amplifications, could activate its oncogenicity in human lymphomas.
The full repertoire of proteins that comprise the striated muscle Z-disc and peripheral structures, such as the costamere, have yet to be discovered. Recent studies suggest that this elaborate protein network, which acts as a structural and signaling center for striated muscle, harbors factors that function as mechanosensors to ensure coordinated contractile activity. Mutations in genes whose products reside in this region often result in skeletal and cardio myopathies, demonstrating the importance of this macromolecular complex in muscle structure and function. Here, we describe the characterization of a direct, downstream target gene for the MEF2A transcription factor encoding a large, muscle-specific protein that localizes to the costamere in striated muscle. This gene, called myospryn, was identified by microarray analysis as a transcript downregulated in MEF2A knock-out mice. MEF2A knock-out mice develop cardiac failure during the perinatal period with mutant hearts exhibiting several cardiac abnormalities including myofibrillar disarray. Myospryn is the mouse ortholog of a partial human cDNA of unknown function named cardiomyopathy-associated gene 5 (CMYA5). Myospryn is expressed as a single, large transcript of ϳ12 kilobases in adult heart and skeletal muscle with an open reading frame of 3739 amino acids. This protein, belonging to the tripartite motif superfamily of proteins, contains a B-box coiled-coil (BBC), two fibronectin type III (FN3) repeats, and SPRY domains and interacts with the sarcomeric Z-disc protein, ␣-actinin-2. Our findings demonstrate that myospryn functions directly downstream of MEF2A at the costamere in striated muscle potentially playing a role in myofibrillogenesis.
Recently we identified a novel target gene of MEF2A named myospryn that encodes a large, muscle-specific, costamere-restricted alpha-actinin binding protein. Myospryn belongs to the tripartite motif (TRIM) superfamily of proteins and was independently identified as a dysbindin-interacting protein. Dysbindin is associated with alpha-dystrobrevin, a component of the dystrophin-glycoprotein complex (DGC) in muscle. Apart from these initial findings little else is known regarding the potential function of myospryn in striated muscle. Here we reveal that myospryn is an anchoring protein for protein kinase A (PKA) (or AKAP) whose closest homolog is AKAP12, also known as gravin/AKAP250/SSeCKS. We demonstrate that myospryn co-localizes with RII alpha, a type II regulatory subunit of PKA, at the peripheral Z-disc/costameric region in striated muscle. Myospryn interacts with RII alpha and this scaffolding function has been evolutionarily conserved as the zebrafish ortholog also interacts with PKA. Moreover, myospryn serves as a substrate for PKA. These findings point to localized PKA signaling at the muscle costamere.
Alterations in signaling pathway activity have been implicated in the pathogenesis of Duchenne muscular dystrophy, a degenerative muscle disease caused by a deficiency in the costameric protein dystrophin. Accordingly, the notion of the dystrophin-glycoprotein complex, and by extension the costamere, as harboring signaling components has received increased attention in recent years. The localization of most, if not all, signaling enzymes to this subcellular region relies on interactions with scaffolding proteins directly or indirectly associated with the dystrophin-glycoprotein complex. One of these scaffolds is myospryn, a large, muscle-specific protein kinase A (PKA) anchoring protein or AKAP. Previous studies have demonstrated a dysregulation of myospryn expression in human Duchenne muscular dystrophy, suggesting a connection to the pathophysiology of the disorder. Here we report that dystrophic muscle exhibits reduced PKA activity resulting, in part, from severely mislocalized myospryn and the type II regulatory subunit (RII␣) of PKA. Furthermore, we show that myospryn and dystrophin coimmunoprecipitate in native muscle extracts and directly interact in vitro. Our findings reveal for the first time abnormalities in the PKA signal transduction pathway and myospryn regulation in dystrophin deficiency.The major macromolecular protein complex within the muscle costamere is the dystrophin-glycoprotein complex (DGC). 2The DGC harbors the large, actin-binding protein dystrophin, the absence of which results in Duchenne muscular dystrophy (DMD), a lethal, X-linked degenerative muscle disease (1-4). It is undisputed that defects within the DGC are one of the major triggers of muscular dystrophy, yet the mechanisms by which a defective DGC leads to muscle degeneration remain unclear. Hence, intense efforts have been put forth to molecularly dissect the function of dystrophin as well as the DGC (5, 6) and to identify novel regulators of this complex in striated muscle.Dystrophin serves as a scaffold for numerous protein-protein interactions with components of the DGC as well as non-DGC proteins at the level of the costamere (7, 8). The prevailing model suggests a structural and mechanical role for dystrophin (9), but an additional function in signaling has been proposed (10, 11). Although elucidating the role of dystrophin in signaling has been a challenging task, there is evidence of altered signaling activity in muscular dystrophies. Alterations in calcium levels and the neuronal nitric oxide synthase pathway in DMD have been known for some time (12)(13)(14). Perturbations in the activity of additional signaling molecules such as calcineurin, Akt, JNK1, and IB kinase/ NF-B have been linked to muscular dystrophies (15)(16)(17)(18)(19).Recently, we showed that the costameric protein myospryn functions as a muscle-specific protein kinase A (PKA) anchoring protein or AKAP (20). This was the first demonstration of myospryn coordinating the PKA signaling pathway at the level of the costamere. The AKAP family of scaffolding...
The human c-rel gene (REL), encoding an NF-kappaB transcription factor, is amplified or mutated in several human B-cell lymphomas and can transform chicken lymphoid cells in vitro. We have previously shown that certain deletions of C-terminal transactivation sequences enhance REL's transforming ability in chicken spleen cells. In this report, we have analysed the effect of single amino-acid changes at select serine residues in the C-terminal transactivation domain on REL's transforming ability. Mutation of either of two TNFalpha-inducible serine residues (Ser460 and Ser471) to nonphosphorylatable residues (alanine, asparagine, phenylalanine) made REL more efficient at transforming chicken spleen cells in vitro. In contrast, mutation of Ser471 to a phosphorylation mimetic aspartate residue impaired REL's transforming ability, even though it increased REL's inherent transactivation ability as a GAL4-fusion protein. Alanine mutations of several other serine residues within the transactivation domain did not substantially affect REL's transforming ability. Transactivation by GAL4-REL fusion proteins containing either transformation enhancing or nonenhancing mutations at serine residues was generally similar to wild-type GAL4-REL. However, more transforming mutants with mutations at either Ser460 or Ser471 differed from wild-type REL in their ability to transactivate certain kappaB-site reporter genes. In particular, the SOD2 promoter, encoding manganese superoxide dismutase, was activated less strongly by the more transforming REL mutant REL-S471N in transient assays, but REL-S471N-transformed chicken spleen cells had increased levels of MnSOD protein as compared to wild-type REL-transformed cells. Taken together, our results show that mutations of certain serine residues can enhance REL's transforming ability in vitro and suggest that these mutations increase REL-mediated transformation by altering REL's ability to modulate the expression of select target genes. Furthermore, phosphorylation of Ser471 may be involved in REL-mediated modulation of transformation-specific target gene expression. Lastly, these results suggest that similar mutations in the REL transactivation domain contribute to the development of certain human B-cell lymphomas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.