Background:
Scapular fractures following reverse total shoulder arthroplasty (RSA) are devastating complications with substantial functional implications. The role of the coracoacromial ligament (CAL), which is often transected during surgical exposure for RSA, is not fully known. We hypothesized that the CAL contributes to the structural integrity of the “scapular ring” and that the transection of this ligament during RSA alters the scapular strain patterns.
Methods:
RSA was performed on 8 cadaveric specimens without evidence of a prior surgical procedure in the shoulder. Strain rosettes were fixed onto the acromial body (at the location of Levy type-II fractures) and the scapular spine (Levy type III). With use of a shoulder simulator, strains were recorded at 0°, 30°, and 60° glenohumeral abductions before and after CAL transection. The deltoid and glenohumeral joints were functionally loaded (middle deltoid = 150 N, posterior deltoid = 75 N, and joint compression = 300 N). Maximum principal strains were calculated from each rosette at each abduction angle. A repeated-measures analysis of variance with post hoc analysis was performed to compare the maximum principal strain at each abduction angle.
Results:
With the CAL intact, there was no significant difference between strain experienced by the acromion and scapular spine at 0°, 30°, and 60° of glenohumeral abduction. CAL transection generated significantly increased strain in the scapular spine at all abduction angles compared with an intact CAL. The maximum scapular spine strain observed was increased 19.7% at 0° of abduction following CAL transection (1,216 ± 300.0 microstrain; p = 0.011). Following CAL transection, acromial strains paradoxically decreased at all abduction angles (p < 0.05 for all). The smallest strains were observed at 60° of glenohumeral abduction at the acromion following CAL transection (296 ± 121.3 microstrain; p = 0.048).
Conclusions:
The CAL is an important structure that completes the “scapular ring” and therefore serves to help distribute strain in a more normalized fashion. Transection of the CAL substantially alters strain patterns, resulting in increased strain at the scapular spine following RSA.
Clinical Relevance:
CAL preservation is a modifiable risk factor that may reduce the risk of bone microdamage and thus the occurrence of fatigue/stress fractures in the scapular spine following RSA.
Purpose of the review To review the relevant literature surrounding acromioclavicular (AC) joint injuries particularly pertaining to overhead athletes. Recent findings The AC joint is a unique anatomic and biomechanical portion of the shoulder that can be problematic for athletes, particularly throwers, when injured. Treatment of these injuries remains a topic in evolution. Low-grade injuries (Rockwood types I & II) are typically treated non-operatively while high-grade injuries (types IV, V, and VI) are considered unstable and often require operative intervention. Type III AC separations remain the most controversial and challenging as no clear treatment algorithm has been established. A wide variety of surgical techniques exist. Unfortunately, relatively little literature exists with regard to overhead athletes specifically. Summary Treatment of AC joint injuries remains challenging, at times, particularly for overhead athletes. Operative indications and techniques are still evolving, and more research is needed specifically surrounding overhead athletes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.