Integrating light field microscopy techniques with existing miniscope architectures has allowed for volumetric imaging of targeted brain regions in freely moving animals. However, the current design of light field miniscopes is limited by non-uniform resolution and long imaging path length. In an effort to overcome these limitations, this paper proposes an optimized Galilean-mode light field miniscope (Gali-MiniLFM), which achieves a more consistent resolution and a significantly shorter imaging path than its conventional counterparts. In addition, this paper provides a novel framework that incorporates the anticipated aberrations of the proposed Gali-MiniLFM into the point spread function (PSF) modeling. This more accurate PSF model can then be used in 3D reconstruction algorithms to further improve the resolution of the platform. Volumetric imaging in the brain necessitates the consideration of the effects of scattering. We conduct Monte Carlo simulations to demonstrate the robustness of the proposed Gali-MiniLFM for volumetric imaging in scattering tissue.
Extended depth of field (EDoF) microscopy has emerged as a powerful solution to greatly increase the access into neuronal populations in table-top imaging platforms. Here, we present EDoF-Miniscope, which integrates an optimized thin and lightweight binary diffractive optical element (DOE) onto the gradient refractive index (GRIN) lens of a head-mounted fluorescence miniature microscope, i.e. "miniscope". We achieve an alignment accuracy of 70 μm to allow a 2.8X depth-of-field extension between the twin foci. We optimize the phase profile across the whole back aperture through a genetic algorithm that considers the primary GRIN lens aberrations, optical property of the submersion media, and axial intensity loss from tissue scattering in a Fourier optics forward model. Compared to other computational miniscopes, our EDoF-Miniscope produces high-contrast signals that can be recovered by a simple algorithm and can successfully capture volumetrically distributed neuronal signals without significantly compromising the speed, signal-to-noise, signal-to-background, and maintain a comparable 0.9-μm lateral spatial resolution and the size and weight of the miniature platform. We demonstrate the robustness of EDoF-Miniscope against scattering by characterizing its performance in 5-μm and 10-μm beads embedded in scattering phantoms. We demonstrate that EDoF-Miniscope facilitates deeper interrogations of neuronal populations in a 100-μm thick mouse brain sample, as well as vessels in a mouse brain. Built from off-the-shelf components augmented by a customizable DOE, we expect that this low-cost EDoF-Miniscope may find utility in a wide range of neural recording applications.
We demonstrate an extended-depth-of-field miniscope (EDoF-Miniscope) for high contrast neural imaging through an optimized binary diffractive optical element (DOE). Our platform achieves a spatial resolution of 0.9-μm and 2.8x axial elongation across fixed neural samples.
We demonstrate an extended-depth-of-field miniscope (EDoF-Miniscope) which utilizes an optimized binary diffractive optical element (DOE) to achieve a 2.8x axial elongation in twin foci when integrated on the pupil plane. We optimize our DOE through a genetic algorithm, which utilizes a Fourier optics forward model to consider the native aberrations of the primary gradient refractive index (GRIN) lens, optical property of the submersion media, the geometric effects of the target fluorescent sources and axial intensity loss from tissue scattering to create a robust EDoF. We demonstrate that our platform achieves high contrast signals that can be recovered through a simple filter across 5-μm and 10-μm beads embedded in scattering phantoms, and fixed mouse brain samples.
Significance: Fluorescence head-mounted microscopes, i.e., miniscopes, have emerged as powerful tools to analyze in-vivo neural populations but exhibit a limited depth-of-field (DoF) due to the use of high numerical aperture (NA) gradient refractive index (GRIN) objective lenses.Aim: We present extended depth-of-field (EDoF) miniscope, which integrates an optimized thin and lightweight binary diffractive optical element (DOE) onto the GRIN lens of a miniscope to extend the DoF by 2.8× between twin foci in fixed scattering samples.Approach: We use a genetic algorithm that considers the GRIN lens' aberration and intensity loss from scattering in a Fourier optics-forward model to optimize a DOE and manufacture the DOE through single-step photolithography. We integrate the DOE into EDoF-Miniscope with a lateral accuracy of 70 μm to produce high-contrast signals without compromising the speed, spatial resolution, size, or weight. Results:We characterize the performance of EDoF-Miniscope across 5-and 10-μm fluorescent beads embedded in scattering phantoms and demonstrate that EDoF-Miniscope facilitates deeper interrogations of neuronal populations in a 100-μm-thick mouse brain sample and vessels in a whole mouse brain sample.Conclusions: Built from off-the-shelf components and augmented by a customizable DOE, we expect that this low-cost EDoF-Miniscope may find utility in a wide range of neural recording applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.