Gliomas are highly invasive forms of brain cancer comprising more than 50% of brain tumor cases in adults, and astrocytomas account for ∼60-70% of all gliomas. As a result of multiple factors, including enhanced migratory properties and extracellular matrix remodeling, even with current standards of care, mean survival time for patients is only ∼12 months. Because glioblastoma multiforme (GBM) cells arise from astrocytes, there is great interest in elucidating the interactions of these two cell types in vivo. Previous work performed on two-dimensional assays (i.e., tissue culture plastic and Boyden chamber assays) utilizes substrates that lack the complexities of the natural microenvironment. Here, we employed a three-dimensional, electrospun poly-(caprolactone) (PCL) nanofiber system (NFS) to mimic some features of topographical properties evidenced in vivo. Co-cultures of human GBM cells and rat astrocytes, as performed on the NFS, showed a significant increase in astrocyte GFAP expression, particularly in the presence of extracellular matrix (ECM) deposited by GBM cells. In addition, GBM migration increased in the presence of astrocytes or soluble factors (i.e., conditioned media). However, the presence of fixed astrocytes acted as an antagonist, lowering GBM migration rates. This data suggests that astrocytes and GBM cells interact through a multitude of pathways, including soluble factors and direct contact. This work demonstrates the potential of the NFS to duplicate some topographical features of the GBM tumor microenvironment, permitting analysis of topographical effects in GBM migration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.