Nowadays with the evolution of Internet of Things (IoT), building a network of sensors for measuring data from remote locations requires a good plan considering a lot of parameters including power consumption. A Lot of communication technologies such as WIFI, Bluetooth, Zigbee, Lora, Sigfox, and GSM/GPRS are being used based on the application and this application will have some requirements such as communication range, power consumption, and detail about data to be transmitted. In some places, especially the hilly area like Rwanda and where GSM connectivity is already covered, GSM/GPRS may be the best choice for IoT applications. Energy consumption is a big challenge in sensor nodes which are specially supplied by batteries as the lifetime of the node and network depends on the state of charge of the battery. In this paper, we are focusing on static sensor nodes communicating using the GPRS protocol. We acquired current consumption for the sensor node in different locations with their corresponding received signal quality and we tried to experimentally find a mathematical data-driven model for estimating the GSM/GPRS sensor node battery lifetime using the received signal strength indicator (RSSI). This research outcome will help to predict GPRS sensor node life, replacement intervals, and dynamic handover which will in turn provide uninterrupted data service. This model can be deployed in various remote WSN and IoT based applications like forests, volcano, etc. Our research has shown convincing results like when there is a reduction of −30 dBm in RSSI, the current consumption of the radio unit of the node will double.
Temperature control is the key element during medicine storage. Pharmacies sell some medical products which are kept in fridges. The opening and closing of the fridge while taking some medicine makes the outside hot air enter the fridge, which will increase the inner fridge temperature. When the frequency of opening and closing of the fridge is increased, the temperature may go beyond the allowed storage temperature range. In this paper, we are proposing a model with the help of machine learning that will be used in multiple chambers fridges to keep indicating the time remaining for the inner temperature to go beyond the allowed range, and if the time is short, the system will propose to the pharmacist not to open that particular room and proposes a room that has enough time slots (time to reach the upper limit temperature). By using training data got from a thermoelectric cooler-based fridge, we constructed a multiple linear regression model that can predict the required time for a given room to reach the cut-off temperature in case that room is opened. The built model was evaluated using the coefficient of determination R2 and is found to be 77%, and then it can be used to develop a multiple room smart fridge for efficiently storing highly sensitive medical products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.