Abstract. We have cloned from Schistosoma haematobium genome a repeated sequence, the DraI repeated sequence, which consists of tandemly arranged 121-bp-long units and which is highly abundant (ϳ 15% of the S. haematobium genome). By these features, the DraI repeat is similar to the Sm1-7 sequence of Schistosoma mansoni previously described by us. However, their nucleotide sequences are profoundly different. Polymerase chain reaction (PCR) primers were designed on the basis of the DraI sequence information and were used in a PCR assay by which as little as 10 fg of schistosomal DNA as well as individual cercariae were detected. The DraI repeat cross-hybridized with DNA from Schistosoma bovis, Schistosoma magrebowiei, Schistosoma mattheei, Schistosoma curassoni, and Schistosoma intercalatum, but not with DNA from S. mansoni nor from Trichobilharzia ocellata and Echinostoma sp. A potential value of this PCR assay is suggested for monitoring free-living cercariae and infected snails only in bodies free of cross-hybridizing species.
Monitoring post-control transmission of schistosomes by examining humans becomes less effective as infection rates among humans decrease. Molecular monitoring of prepatent schistosome infection in snails by the polymerase chain reaction (PCR) has been used for studying human-to-snail transmission, and snail prepatent infection rates were found to correspond to infection prevalence and average intensity in human populations contacting the sites studied. We have now developed loop-mediated isothermal amplification (LAMP) assays for identifying Schistosoma mansoni and S. haematobium to facilitate large-scale evaluation of post-intervention transmission potential. LAMP primers were designed based on the Sm1-7 and DraI repeated sequences of the corresponding schistosomes, and amplification by LAMP of these 121-basepair highly abundant sequences provided a detection sensitivity of 0.1 fg of genomic DNA. When these LAMP assays were applied for examining infected laboratory snails, it was possible to identify infection from the first day after exposure to miracidia. The potential advantages of these assays are discussed.
In the Msambweni area of the Kwale District in Kenya, an area endemic for Schistosoma haematobium, potential intermediate-host snails were systematically surveyed in water bodies associated with human contact that were previously surveyed in the 1980s. Bulinus (africanus) nasutus, which accounted for 67% of the snails collected, was the only snail shedding S. haematobium cercariae. Lanistes purpureus was the second most common snail (25%); lower numbers of Bulinus forskalii and Melanoides tuberculata were also recovered. Infection with non-S. haematobium trematodes was found among all snail species. Rainfall was significantly associated with the temporal distribution of all snail species: high numbers of Bulinus nasutus developed after extensive rainfall, followed, in turn, by increased S. haematobium shedding. Spatial distribution of snails was significantly clustered over a range of up to 1 km, with peak clustering observed at a distance of 400 meters. Water lily (Nymphaea spp.) and several aquatic grass species appeared necessary for local colonization by B. nasutus or L. purpureus.
Levels of prepatent Schistosoma haematobium infection were monitored in intermediate host snails (Bulinus nasutus) collected from transmission sites in coastal Kenya, using a polymerase chain reaction (PCR) assay amplifying the Dra I repeated sequence of S. haematobium. The timing and number of prepatent and patent infections were determined for each site and, where the time of first appearance was clear, the minimal prepatent period was estimated to be five weeks. High, persistent, prepatency rates (range = 28-54%), indicated a significant degree of repeated area contamination with parasite ova. In contrast, rates of cercarial shedding proved locally variable, and were either low (range = 0.14-3.4%) or altogether absent, indicating that only a small proportion of infected snails reach the stage of cercarial shedding. Given the apparently strong focal effects of environmental conditions, implications of these new data are discussed regarding the estimation of local force of transmission and the design of control activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.