Post-translational modification marked by the covalent attachment of the ubiquitin-like protein SUMO-1/ SMT3C has been implicated in a wide variety of cellular processes. Recently, two cDNAs encoding proteins related to SUMO-1 have been identified in human and mouse. The functions and regulation of these proteins, known as SUMO-2/SMT3A and SUMO-3/SMT3B, remain largely uncharacterized. We describe herein quantitative and qualitative distinctions between SUMO-1 and SUMO-2/3 in vertebrate cells. Much of this was accomplished through the application of an antibody that recognizes SUMO-2 and -3, but not SUMO-1. This antibody detected multiple SUMO-2/3-modified proteins and revealed that, together, SUMO-2 and -3 constitute a greater percentage of total cellular protein modification than does SUMO-1. Intriguingly, we found that there was a large pool of free, non-conjugated SUMO-2/3 and that the conjugation of SUMO-2/3 to high molecular mass proteins was induced when the cells were subjected to protein-damaging stimuli such as acute temperature fluctuation. In addition, we demonstrated that SUMO-2/3 conjugated poorly, if at all, to a major SUMO-1 substrate, the Ran GTPase-activating protein RanGAP1. Together, these results support the concept of important distinctions between the SUMO-2/3 and SUMO-1 conjugation pathways and suggest a role for SUMO-2/3 in the cellular responses to environmental stress.
The inhibition of apoptosis of infected host cells is a well-known but poorly understood function of pathogenic mycobacteria. We show that inactivation of the secA2 gene in Mycobacterium tuberculosis, which encodes a component of a virulence-associated protein secretion system, enhanced the apoptosis of infected macrophages by diminishing secretion of mycobacterial superoxide dismutase. Deletion of secA2 markedly increased priming of antigen-specific CD8 + T cells in vivo, and vaccination of mice and guinea pigs with a secA2 mutant significantly increased resistance to M. tuberculosis challenge compared with standard M. bovis bacille CalmetteGuérin vaccination. Our results define a mechanism for a key immune evasion strategy of M. tuberculosis and provide what we believe to be a novel approach for improving mycobacterial vaccines.
Fragile X syndrome (FXS) is the leading cause of both intellectual disability and autism resulting from a single gene mutation. Previously, we characterized cognitive impairments and brain structural defects in a Drosophila model of FXS and demonstrated that these impairments were rescued by treatment with metabotropic glutamate receptor (mGluR) antagonists or lithium. A well-documented biochemical defect observed in fly and mouse FXS models and FXS patients is low cAMP levels. cAMP levels can be regulated by mGluR signaling. Herein, we demonstrate PDE-4 inhibition as a therapeutic strategy to ameliorate memory impairments and brain structural defects in the Drosophila model of fragile X. Furthermore, we examine the effects of PDE-4 inhibition by pharmacologic treatment in the fragile X mouse model. We demonstrate that acute inhibition of PDE-4 by pharmacologic treatment in hippocampal slices rescues the enhanced mGluR-dependent LTD phenotype observed in FXS mice. Additionally, we find that chronic treatment of FXS model mice, in adulthood, also restores the level of mGluR-dependent LTD to that observed in wild-type animals. Translating the findings of successful pharmacologic intervention from the Drosophila model into the mouse model of FXS is an important advance, in that this identifies and validates PDE-4 inhibition as potential therapeutic intervention for the treatment of individuals afflicted with FXS.
Fragile X is the most common monogenic disorder associated with intellectual disability (ID) and autism spectrum disorders (ASD). Additionally, many patients are afflicted with executive dysfunction, ADHD, seizure disorder and sleep disturbances. Fragile X is caused by loss of FMRP expression, which is encoded by the FMR1 gene. Both the fly and mouse models of fragile X are also based on having no functional protein expression of their respective FMR1 homologs. The fly model displays well defined cognitive impairments and structural brain defects and the mouse model, although having subtle behavioral defects, has robust electrophysiological phenotypes and provides a tool to do extensive biochemical analysis of select brain regions. Decreased cAMP signaling has been observed in samples from the fly and mouse models of fragile X as well as in samples derived from human patients. Indeed, we have previously demonstrated that strategies that increase cAMP signaling can rescue short term memory in the fly model and restore DHPG induced mGluR mediated long term depression (LTD) in the hippocampus to proper levels in the mouse model (McBride et al., 2005; Choi et al., 2011, 2015). Here, we demonstrate that the same three strategies used previously with the potential to be used clinically, lithium treatment, PDE-4 inhibitor treatment or mGluR antagonist treatment can rescue long term memory in the fly model and alter the cAMP signaling pathway in the hippocampus of the mouse model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.