Modulation of the acetylation state of histones plays a pivotal role in the regulation of gene expression. Histone deacetylases (HDACs) catalyze the removal of acetyl groups from lysines near the N termini of histones. This reaction promotes the condensation of chromatin, leading to repression of transcription. HDAC deregulation has been linked to several types of cancer, suggesting a potential use for HDAC inhibitors in oncology. Here we describe the first crystal structures of a human HDAC: the structures of human HDAC8 complexed with four structurally diverse hydroxamate inhibitors. This work sheds light on the catalytic mechanism of the HDACs, and on differences in substrate specificity across the HDAC family. The structure also suggests how phosphorylation of Ser39 affects HDAC8 activity.
Aquaporin (AQP) 4 is the predominant water channel in the mammalian brain, abundantly expressed in the blood-brain and braincerebrospinal fluid interfaces of glial cells. Its function in cerebral water balance has implications in neuropathological disorders, including brain edema, stroke, and head injuries. The 1.8-Å crystal structure reveals the molecular basis for the water selectivity of the channel. Unlike the case in the structures of water-selective AQPs AqpZ and AQP1, the asparagines of the 2 Asn-Pro-Ala motifs do not hydrogen bond to the same water molecule; instead, they bond to 2 different water molecules in the center of the channel. Molecular dynamics simulations were performed to ask how this observation bears on the proposed mechanisms for how AQPs remain totally insulating to any proton conductance while maintaining a single file of hydrogen bonded water molecules throughout the channel.brain edema ͉ inhibitor discovery ͉ NPA motif
In humans, NH 3 transport across cell membranes is facilitated by the Rh (rhesus) family of proteins. Human Rh C glycoprotein (RhCG) forms a trimeric complex that plays an essential role in ammonia excretion and renal pH regulation. The X-ray crystallographic structure of human RhCG, determined at 2.1 Å resolution, reveals the mechanism of ammonia transport. Each monomer contains 12 transmembrane helices, one more than in the bacterial homologs. Reconstituted into proteoliposomes, RhCG conducts NH 3 to raise internal pH. Models of the erythrocyte Rh complex based on our RhCG structure suggest that the erythrocytic Rh complex is composed of stochastically assembled heterotrimers of RhAG, RhD, and RhCE.ammonia channel | comparative modeling | membrane protein | rhesus factor | X-ray structure
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.