Radiation brightening was recently observed in a multifluorophoreconjugated brome mosaic virus (BMV) particle at room temperature under pulsed excitation. On the basis of its nonlinear dependence on the number of chromophores, the origins of the phenomenon were attributed to a collective relaxation. However, the mechanism remains unknown. We present ultrafast transient absorption and fluorescence spectroscopic studies which shed new light on the collective nature of the relaxation dynamics in such radiation-brightened, multifluorophore particles. Our findings indicate that the emission dynamics is consistent with a superradiance mechanism. The ratio between the rates of competing radiative and nonradiative relaxation pathways depends on the number of chromophores per virus. The findings suggest that small icosahedral virus shells provide a unique biological scaffold for developing nonclassical, deep subwavelength light sources and may open new avenues for the development of photonic probes for medical imaging applications.
Solving Maxwell’s equations numerically to map electromagnetic fields in the vicinity of nanostructured metal surfaces can be a daunting task when studying non-periodic, extended patterns. However, for many nanophotonic applications...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.