Mitochondria are essential components of eukaryotic cells, carrying out critical physiological processes that include energy production and calcium buffering. Consequently, mitochondrial dysfunction is associated with a range of human diseases. Fundamental to their function is the ability to transition through fission and fusion states, which is regulated by several GTPases. Here, we have developed new methods for the non-subjective quantification of mitochondrial morphology in muscle and neuronal cells of Caenorhabditis elegans . Using these techniques, we uncover surprising tissue-specific differences in mitochondrial morphology when fusion or fission proteins are absent. From ultrastructural analysis, we reveal a novel role for the fusion protein FZO-1/mitofusin 2 in regulating the structure of the inner mitochondrial membrane. Moreover, we have determined the influence of the individual mitochondrial fission (DRP-1/DRP1) and fusion (FZO-1/mitofusin 1,2; EAT-3/OPA1) proteins on animal behaviour and lifespan. We show that loss of these mitochondrial fusion or fission regulators induced age-dependent and progressive deficits in animal movement, as well as in muscle and neuronal function. Our results reveal that disruption of fusion induces more profound defects than lack of fission on animal behaviour and tissue function, and imply that while fusion is required throughout life, fission is more important later in life likely to combat ageing-associated stressors. Furthermore, our data demonstrate that mitochondrial function is not strictly dependent on morphology, with no correlation found between morphological changes and behavioural defects. Surprisingly, we find that disruption of either mitochondrial fission or fusion significantly reduces median lifespan, but maximal lifespan is unchanged, demonstrating that mitochondrial dynamics play an important role in limiting variance in longevity across isogenic populations. Overall, our study provides important new insights into the central role of mitochondrial dynamics in maintaining organismal health. Electronic supplementary material The online version of this article (10.1007/s00018-019-03024-5) contains supplementary material, which is available to authorized users.
Parasitic worms cause very significant diseases in animals and humans worldwide, and their control is critical to enhance health, well-being and productivity. Due to widespread drug resistance in many parasitic worms of animals globally, there is a major, continuing demand for the discovery and development of anthelmintic drugs for use to control these worms. Here, we established a practical, cost-effective and semi-automated high throughput screening (HTS) assay, which relies on the measurement of motility of larvae of the barber’s pole worm (Haemonchus contortus) using infrared light-interference. Using this assay, we screened 80,500 small molecules and achieved a hit rate of 0.05%. We identified three small molecules that reproducibly inhibited larval motility and/or development (IC50 values of ~4 to 41 µM). Future work will critically assess the potential of selected hits as candidates for subsequent optimisation or repurposing against parasitic nematodes. This HTS assay has a major advantage over most previous assays in that it achieves a ≥ 10-times higher throughput (i.e., 10,000 compounds per week), and is thus suited to the screening of libraries of tens of thousands to hundreds of thousands of compounds for subsequent hit-to-lead optimisation or effective repurposing and development. The current assay should be adaptable to many socioeconomically important parasitic nematodes, including those that cause neglected tropical diseases (NTDs). This aspect is of relevance, given the goals of the World Health Organization (WHO) Roadmap for NTDs 2021–2030, to develop more effective drugs and drug combinations to improve patient outcomes and circumvent the ineffectiveness of some current anthelmintic drugs and possible drug resistance.
Parasitic nematodes cause diseases in livestock animals and major economic losses to the agricultural industry worldwide. Nematodes of the order Strongylida, including Haemonchus contortus, are particularly important. The excessive use of anthelmintic compounds to treat infections and disease has led to widespread resistance to these compounds in nematodes, such that there is a need for new anthelmintics with distinctive mechanisms of action. With a focus on discovering new anthelmintic entities, we screened 400 chemically diverse compounds within the ‘Pandemic Response Box’ (from Medicines for Malaria Venture, MMV) for activity against H. contortus and its free-living relative, Caenorhabditis elegans—a model organism. Using established phenotypic assays, test compounds were evaluated in vitro for their ability to inhibit the motility and/or development of H. contortus and C. elegans. Dose-response evaluations identified a compound, MMV1581032, that significantly the motility of H. contortus larvae (IC50 = 3.4 ± 1.1 μM) and young adults of C. elegans (IC50 = 7.1 ± 4.6 μM), and the development of H. contortus larvae (IC50 = 2.2 ± 0.7 μM). The favourable characteristics of MMV1581032, such as suitable physicochemical properties and an efficient, cost-effective pathway to analogue synthesis, indicates a promising candidate for further evaluation as a nematocide. Future work will focus on a structure-activity relationship investigation of this chemical scaffold, a toxicity assessment of potent analogues and a mechanism/mode of action investigation.
Widespread resistance in parasitic nematodes to most classes of anthelmintic drugs demands the discovery and development of novel compounds with distinct mechanisms of action to complement strategic or integrated parasite control programs. Products from nature—which assume a diverse ‘chemical space’—have significant potential as a source of anthelmintic compounds. In the present study, we screened a collection of extracts (n = 7616) derived from marine invertebrates sampled from Australian waters in a high throughput bioassay for in vitro anti-parasitic activity against the barber’s pole worm (Haemonchus contortus)—an economically important parasitic nematode of livestock animals. In this high throughput screen (HTS), we identified 58 active extracts that reduced larval motility by ≥70% (at 90 h), equating to an overall ‘hit rate’ of ~0.8%. Of these 58 extracts, 16 also inhibited larval development by ≥80% (at 168 h) and/or induced ‘non-wild-type’ (abnormal) larval phenotypes with reference to ‘wild-type’ (normal) larvae not exposed to extract (negative controls). Most active extracts (54 of 58) originated from sponges, three from chordates (tunicates) and one from a coral; these extracts represented 37 distinct species/taxa of 23 families. An analysis of samples by 1H NMR fingerprinting was utilised to dereplicate hits and to prioritise a set of 29 sponge samples for future chemical investigation. Overall, these results indicate that a range of sponge species from Australian waters represents a rich source of natural compounds with nematocidal or nematostatic properties. Our plan now is to focus on in-depth chemical investigations of the sample set prioritised herein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.