Polar effects are demonstrated to be a key factor in controlling the reactivities of related charged phenyl radicals in different exothermic atom and group abstraction reactions in the gas phase. The effects of various meta substituents on the phenyl radicals' reactivity were probed via the measurement of bimolecular reaction rate constants by using Fourier transform ion cyclotron resonance mass spectrometry. This approach requires an additional, charged substituent to be present in the phenyl radical to allow mass spectrometric manipulation. The m-pyridinium group was chosen for this purpose. The substrates studied were allyl iodide, dimethyl disulfide, and tert-butyl isocyanide. Two of the reactions of interest, *I and *SCH(3) transfer, are thought to occur by concerted bimolecular homolytic substitution (S(H)2), and the third one, *CN transfer, by an addition/elimination mechanism. For all three substrates, the reaction rate was found to increase in the following order for the differently substituted phenyl radicals: CH(3) approximately H < Br approximately Cl approximately COOH < NO(2) approximately CN. This trend does not arise from differences in reaction exothermicities or bond dissociation energies but via lowering the reaction barrier by electronic effects. The stabilization of the transition state is attributed to its increased polar character. A semiquantitative measure of the barrier lowering effect for each substituent is obtained from its influence on the electron affinity of the charged radical, as the calculated (B3LYP/6-31+G(d)) adiabatic electron affinities of the radical model systems (ammonium instead of pyridinium charge site) follow the same trend as the reactivities.
The feasibility of generating substituted phenyl radicals and biradicals (with a charged substituent) in the gas phase by laser photolysis was examined by using a Fourier-transform ion cyclotron resonance mass spectrometer. The precursors were generated by ipso-substitution of a halogen atom in the radical cation of a di- or trihalobenzene by various nucleophiles. Photolytic cleavage of the remaining carbon-halogen bond(s) with 266-nm radiation was found to produce many substituted phenyl radicals in greater yields than the earlier employed method, sustained off-resonance irradiated collision-activated dissociation (SORI-CAD). Furthermore, ion generation by photolysis leads to isomerization less often than collisional activation. Finally, not only phenyl-bromine and phenyl-iodine but also certain phenyl-chlorine bonds can be cleaved by photolysis, whereas the synthetic utility of SORI-CAD appears to be largely limited to the cleavage of phenyl-iodine bonds. Hence, laser photolysis greatly expands the variety of substituted phenyl radicals and biradicals that can be synthesized inside a mass spectrometer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.