The evolutionary causes of small clutch sizes in tropical and Southern Hemisphere regions are poorly understood. Alexander Skutch proposed 50 years ago that higher nest predation in the south constrains the rate at which parent birds can deliver food to young and thereby constrains clutch size by limiting the number of young that parents can feed. This hypothesis for explaining differences in clutch size and parental behaviors between latitudes has remained untested. Here, a detailed study of bird species in Arizona and Argentina shows that Skutch's hypothesis explains clutch size variation within North and South America. However, neither Skutch's hypothesis nor two major alternatives explain differences between latitudes.
Avian life history theory has long assumed that nest predation plays a minor role in shaping reproductive strategies. Yet, this assumption remains conspicuously untested by broad experiments that alter environmental risk of nest predation, despite the fact that nest predation is a major source of reproductive failure. Here, we examined whether parents can assess experimentally reduced nest predation risk and alter their reproductive strategies. We experimentally reduced nest predation risk and show that in safer environments parents increased investment in young through increased egg size, clutch mass, and the rate they fed nestlings. Parents also increased investment in female condition by increasing the rates that males fed incubating females at the nest, and decreasing the time that females spent incubating. These results demonstrate that birds can assess nest predation risk at large and that nest predation plays a key role in the expression of avian reproductive strategies.
a b s t r a c tThe challenges that face humanity today differ from the past because as the scale of human influence has increased, our biggest challenges have become global in nature, and formerly local problems that could be addressed by shifting populations or switching resources, now aggregate (i.e., "scale up") limiting potential management options. Adaptive management is an approach to natural resource management that emphasizes learning through management based on the philosophy that knowledge is incomplete and much of what we think we know is actually wrong. Adaptive management has explicit structure, including careful elucidation of goals, identification of alternative management objectives and hypotheses of causation, and procedures for the collection of data followed by evaluation and reiteration. It is evident that adaptive management has matured, but it has also reached a crossroads. Practitioners and scientists have developed adaptive management and structured decision making techniques, and mathematicians have developed methods to reduce the uncertainties encountered in resource management, yet there continues to be misapplication of the method and misunderstanding of its purpose. Ironically, the confusion over the term "adaptive management" may stem from the flexibility inherent in the approach, which has resulted in multiple interpretations of "adaptive management" that fall along a continuum of complexity and a priori design. Adaptive management is not a panacea for the navigation of 'wicked problems' as it does not produce easy answers, and is only appropriate in a subset of natural resource management problems where both uncertainty and controllability are high. Nonetheless, the conceptual underpinnings of adaptive management are simple; there will always be inherent uncertainty and unpredictability in the dynamics and behavior of complex social-ecological systems, but management decisions must still be made, and whenever possible, we should incorporate learning into management.Published by Elsevier Ltd.
Broad geographic patterns in egg and clutch mass are poorly described, and potential causes of variation remain largely unexamined. We describe interspecific variation in avian egg and clutch mass within and among diverse geographic regions and explore hypotheses related to allometry, clutch size, nest predation, adult mortality, and parental care as correlates and possible explanations of variation. We studied 74 species of Passeriformes at four latitudes on three continents: the north temperate United States, tropical Venezuela, subtropical Argentina, and south temperate South Africa. Egg and clutch mass increased with adult body mass in all locations, but differed among locations for the same body mass, demonstrating that egg and clutch mass have evolved to some extent independent of body mass among regions. A major portion of egg mass variation was explained by an inverse relationship with clutch size within and among regions, as predicted by life‐history theory. However, clutch size did not explain all geographic differences in egg mass; eggs were smallest in South Africa despite small clutch sizes. These small eggs might be explained by high nest predation rates in South Africa; life‐history theory predicts reduced reproductive effort under high risk of offspring mortality. This prediction was supported for clutch mass, which was inversely related to nest predation but not for egg mass. Nevertheless, clutch mass variation was not fully explained by nest predation, possibly reflecting interacting effects of adult mortality. Tests of the possible effects of nest predation on egg mass were compromised by limited power and by counterposing direct and indirect effects. Finally, components of parental investment, defined as effort per offspring, might be expected to positively coevolve. Indeed, egg mass, but not clutch mass, was greater in species that shared incubation by males and females compared with species in which only females incubate eggs. However, egg and clutch mass were not related to effort of parental care as measured by incubation attentiveness. Ecological and life‐history correlates of egg and clutch mass variation found here follow from theory, but possible evolutionary causes deserve further study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.