In the quadrupole ion trap, it has been noted that factors other than an ion's mass and charge may affect its measured m/z, resulting in compound-dependent, or "chemical", mass shifts. We propose that ions can exhibit a chemical mass shift because they are "fragile" and may fragment during the application of resonance ejection during mass analysis; these effects were studied using ions that include protonated, deprotonated, and adduct ions of explosives, acylcarnitines, and macrolide antibiotics. Fragile ions affect mass resolution by causing broader peaks than nonfragile ions, especially at slower scan speeds, as the result of the application of resonance ejection. Fragile ions may also be fragmented by the application of the isolation waveform during selection of the parent ion for tandem mass spectrometry experiments, making it impossible to achieve unit isolation of a fragile ion. To obtain adequate isolation intensity, the isolation waveform notch width must be increased and the time period of isolation must be decreased. Fragile ions also require lower optimum collision energy to achieve efficient collision-induced dissociation. We have developed criteria for the determination of the degree of ion fragility based upon experimental results.
Combining source collision-induced dissociation (CID) and tandem mass spectral acquisition in a pseudo-MS 3 experiment using a linear ion trap results in a highly selective and sensitive approach to identifying glycopeptide elution from a protein digest. The increased sensitivity is partially attributed to the nonselective nature of source CID, which allows simultaneous activation of all charge states and coeluting glycoforms generating greater ion abundance for the mass-to-charge (m/z) 204 and/or 366 oxonium ions. Unlike source CID alone, a pseudo-MS 3 approach adds selectivity while improving sensitivity by eliminating chemical noise during the tandem mass spectral acquisition of the oxonium ions in the linear ion trap. Performing the experiments in the hybrid linear ion trap/Fourier transform-ion cyclotron resonance (FT-ICR) enables subsequent high-resolution/high-mass accuracy full-scan mass spectra (MS) and parallel acquisition of MS/MS in the linear ion trap to be completed in 2 s directly following the pseudo-MS 3 scan to collate identification and characterization of glycopeptides in one experimental scan cycle. Analysis of bovine fetuin digest using the combined pseudo-MS 3 , high-resolution MS, and data-dependent MS/MS events resulted in identification of four N-linked and two O-linked glycopeptides without enzymatic cleavage of the sugar moiety or release of the sialic acids before analysis. In addition, over 95% of the total protein sequence was identified in one analytical run. (J Am Soc Mass Spectrom 2006, 17, 168 -179)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.