The extension of microfluidic devices to include three-dimensional fluidic networks allows complex fluidic and chemical manipulations but requires innovative methods to interface fluidic layers. Externally controllable interconnects, employing nuclear track-etched polycarbonate membranes containing nanometer-diameter capillaries, are described that produce hybrid three-dimensional fluidic architectures. Controllable nanofluidic transfer is achieved by controlling applied bias, polarity, and density of the immobile nanopore surface charge and the impedance of the nanocapillary array relative to the microfluidic channels. Analyte transport between vertically separated microchannels has three stable transfer levels, corresponding to zero, reverse, and forward bias. The transfer can even depend on the properties of the analyte being transferred such as the molecular size, illustrating the flexible character of the analyte transfer. In a specific analysis implementation, nanochannel array gating is applied to capillary electrophoresis separations, allowing selected separated components to be isolated for further manipulation, thereby opening the way for preparative separations at attomole analyte mass levels.
Integrating multiple analytical processes into microfluidic devices is an important research area required for a variety of microchip-based analyses. A microfluidic system is described that achieves preparative separations by intelligent fraction collection of attomole quantities of sample. The device consists of a main microfluidic channel used to perform electrophoresis, which is interconnected at 90 degrees to two vertically displaced channels via a nanocapillary array membrane. The membrane interconnect contains nanometer-diameter pores that provide fluidic communication between the channels. Sample injection and analyte collection are controlled by application of an electrical bias between the microfluidic channels across the nanocapillary array. After the separation, the automated transfer of the FITC-labeled Arg, Gln, and Gly bands occurs; a fluorescence detector located at the separation/collection channel interconnect is used to generate a triggering signal that initiates suitable voltages to allow near-quantitative transfer of analyte from the separation channel to the second fluidic layer. The ability to achieve such sample manipulations from mass-limited samples enables a variety of postseparation processing events.
A miniaturized lead sensor has been developed by combining a lead-specific DNAzyme with a microfabricated device containing a network of microfluidic channels that are fluidically coupled via a nanocapillary array interconnect. A DNAzyme construct, selective for cleavage in the presence of Pb 2+ and derivatized with fluorophore (quencher) at the 5′ (3′) end of the substrate and enzyme strands, respectively, forms a molecular beacon that is used as the recognition element. The nanocapillary array membrane interconnect is used to manipulate fluid flows and deliver the small-volume sample to the beacon in a spatially confined detection window where the DNAzyme is interrogated using laser-induced fluorescence detection. A transformed log plot of the fluorescent signal exhibits a linear response (r 2 ) 0.982) over a Pb 2+ concentration range of 0.1-100 µM, and a detection limit of 11 nM. The sensor has been applied to the determination of Pb 2+ in an electroplating sludge reference material, the result agreeing with the certified value within 4.9%. Quantitative measurement of Pb 2+ in this complex sample demonstrates the selectivity of this sensor scheme and points favorably to the application of such technologies to analysis of environmental samples. The unique combination of a DNAzyme with a microfluidic-nanofluidic hybrid device makes it possible to change the DNAzyme to select for other compounds of interest, and to incorporate multiple sensing systems within a single device for greater flexibility. This work represents the initial steps toward creation of a robust field sensor for lead in groundwater or drinking water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.