Brain injury in premature infants is of enormous public health importance because of the large number of such infants who survive with serious neurodevelopmental disability, including major cognitive deficits and motor disability. This type of brain injury is generally thought to consist primarily of periventricular leukomalacia (PVL), a distinctive form of cerebral white matter injury. Important new work shows that PVL is frequently accompanied by neuronal/axonal disease, affecting the cerebral white matter, thalamus, basal ganglia, cerebral cortex, brain stem, and cerebellum. This constellation of PVL and neuronal/axonal disease is sufficiently distinctive to be termed “encephalopathy of prematurity”. The thesis of this Review is that the encephalopathy of prematurity is a complex amalgam of primary destructive disease and secondary maturational and trophic disturbances. This Review integrates the fascinating confluence of new insights into both brain injury and brain development during the human premature period.
Innate immunity is an evolutionarily ancient system that provides organisms with immediately available defense mechanisms through recognition of pathogen-associated molecular patterns. We show that in the CNS, specific activation of innate immunity through a Toll-like receptor 4 (TLR4)-dependent pathway leads to neurodegeneration. We identify microglia as the major lipopolysaccharide (LPS)-responsive cell in the CNS. TLR4 activation leads to extensive neuronal death in vitro that depends on the presence of microglia. LPS leads to dramatic neuronal loss in cultures prepared from wild-type mice but does not induce neuronal injury in CNS cultures derived from tlr4 mutant mice. In an in vivo model of neurodegeneration, stimulating the innate immune response with LPS converts a subthreshold hypoxic-ischemic insult from no discernable neuronal injury to severe axonal and neuronal loss. In contrast, animals bearing a loss-of-function mutation in the tlr4 gene are resistant to neuronal injury in the same model. The present study demonstrates a mechanistic link among innate immunity, TLRs, and neurodegeneration. Systemic infection is associated with sustained worsening in many diseases of the CNS, yet the molecular and cellular relationship between infection outside the CNS and potential neuronal loss within the CNS is elusive. Activation of microglia, bone marrow-derived macrophage-like cells that function as the resident immune defense system of the brain (1), is a characteristic feature of most neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, multiple sclerosis, AIDS dementia complex, and amyotrophic lateral sclerosis as well as ischemia and posttraumatic brain injury (2-4). Neurotoxicity induced by -amyloid or HIV proteins in mixed CNS cultures depends on the presence and activation of microglia (5, 6). Liberatore et al. (7) demonstrated in vivo that microglial inducible nitric oxide synthase plays a crucial role in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurodegeneration in the MPTP mouse model of Parkinson's disease.The evolutionarily ancient innate immune system provides the first line of host defense against a large variety of pathogens and also controls many aspects of the adaptive immune response (8). Cells of the innate immune system recognize invariant molecular structures of pathogens termed pathogen-associated molecular patterns through a series of genetically conserved and stable cell-surface receptors related to the Drosophila gene toll that thus are referred to as Toll-like receptors (TLRs) (9).TLR4 functions as the signal-transducing receptor for the endotoxin lipopolysaccharide (LPS) (10), which is a major component of the outer membrane of Gram-negative bacteria. LPS binds to the serum protein LPS-binding protein and the soluble or glycosylphosphatidylinositol-anchored CD14. This complex in turn binds to TLR4 (11) and initiates an intracellular signaling pathway that regulates gene expression through derepression of the transcriptional a...
Hypoxic-ischemic injury to the periventricular cerebral white matter [periventricular leukomalacia (PVL)] results in cerebral palsy and is the leading cause of brain injury in premature infants. The principal feature of PVL is a chronic disturbance of myelination and suggests that oligodendrocyte (OL) lineage progression is disrupted by ischemic injury. We determined the OL lineage stages at risk for injury during the developmental window of vulnerability for PVL (23-32 weeks, postconceptional age). In 26 normal control autopsy human brains, OL lineage progression was defined in parietal white matter, a region of predilection for PVL. Three successive OL stages, the late OL progenitor, the immature OL, and the mature OL, were characterized between 18 and 41 weeks with anti-NG2 proteoglycan, O4, O1, and anti-myelin basic protein (anti-MBP) antibodies. NG2ϩO4ϩ late OL progenitors were the predominant stage throughout the latter half of gestation. Between 18 and 27 weeks, O4ϩO1ϩ immature OLs were a minor population (9.9 Ϯ 2.1% of total OLs; n ϭ 9). Between 28 and 41 weeks, an increase in immature OLs to 30.9 Ϯ 2.1% of total OLs (n ϭ 9) was accompanied by a progressive increase in MBPϩ myelin sheaths that were restricted to the periventricular white matter. The developmental window of high risk for PVL thus precedes the onset of myelination and identifies the late OL progenitor as the major potential target. Moreover, the decline in incidence of PVL at ϳ32 weeks coincides with the onset of myelination in the periventricular white matter and suggests that the risk for PVL is related to the presence of late OL progenitors in the periventricular white matter.
Brain injury in the premature infant is a problem of enormous importance. Periventricular leukomalacia (PVL) is the major neuropathologic form of this brain injury and underlies most of the neurologic morbidity encountered in survivors of premature birth. Prevention of PVL now seems ultimately achievable because of recent neurobiologic insights into pathogenesis. The pathogenesis of this lesion relates to three major interacting factors. The first two of these, an incomplete state of development of the vascular supply to the cerebral white matter, and a maturation-dependent impairment in regulation of cerebral blood flow underlie a propensity for ischemic injury to cerebral white matter. The third major pathogenetic factor is the maturation-dependent vulnerability of the oligodendroglial (OL) precursor cell that represents the major cellular target in PVL. Recent neurobiologic studies show that these cells are exquisitely vulnerable to attack by free radicals, known to be generated in abundance with ischemia-reperfusion. This vulnerability of OLs is maturation-dependent, with the OL precursor cell highly vulnerable and the mature OL resistant, and appears to relate to a developmental window characterized by a combination of deficient antioxidant defenses and active acquisition of iron during OL differentiation. The result is generation of deadly reactive oxygen species and apoptotic OL death. Important contributory factors in pathogenesis interact with this central theme of vulnerability to free radical attack. Thus, the increased likelihood of PVL in the presence of intraventricular hemorrhage could relate to increases in local iron concentrations derived from the hemorrhage. The important contributory role of maternal/fetal infection or inflammation and cytokines in the pathogenesis of PVL could be related to effects on the cerebral vasculature and cerebral hemodynamics, to generation of reactive oxygen species, or to direct toxic effects on vulnerable OL precursors. A key role for elevations in extracellular glutamate, caused by ischemia-reperfusion, is suggested by demonstrations that glutamate causes toxicity to OL precursors by both nonreceptor-and receptor-mediated mechanisms. The former involves an exacerbation of the impairment in antioxidant defenses, and the latter, an ␣-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate receptor-mediated cell death. Most importantly, these new insights into the pathogenesis of PVL suggest potential preventive interventions. These include avoidance of cerebral ischemia by detection of infants with impaired cerebrovascular autoregulation, e.g. through the use of in vivo near-infrared spectroscopy, the use of free radical scavengers to prevent toxicity by reactive oxygen species, the administration of ␣-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate receptor antagonists to prevent glutamatemediated injury, or the use of maternal antibiotics or anticytokine agents to prevent toxicity from maternal/fetal infection or inflammation and cytokines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.