Coronavirus disease 2019 (COVID19) is a respiratory infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) originating in Wuhan China in 2019. The disease in notably severe in elderly and those with underlying chronic conditions. The molecular mechanism as to why the elderly are vulnerable and why children are resistant is largely unknown. Understanding these differences is critical for safeguarding the vulnerable and guiding effective policy and treatments. Here we show loading cells with cholesterol from blood serum using the cholesterol transport protein apolipoprotein E (apoE) enhances the endocytic entry of pseudotyped SARS-CoV-2. Super resolution imaging of the SARS-CoV-2 entry point with high cholesterol showed markedly increased apparent diameter (~10% to 100 nm) and almost twice the total number of viral entry points. The cholesterol concomitantly traffics angiotensinogen converting enzyme (ACE2) to the viral entry site where SARS-CoV-2 docks to properly exploit entry into the cell. Furthermore, we show cholesterol enhances binding of SARS-CoV-2 to the cell surface which increases association with the endocytic pathway. Decreasing cellular cholesterol has the opposite effect. Based on these findings and known loading of cholesterol into peripheral tissue during aging and inflammation, we build a cholesterol dependent model for COVID19 lethality in elderly and the chronically ill. As cholesterol increases with age and inflammation (e.g. smoking and diabetes), the cell surface is coated with viral entry points and optimally assembled viral entry proteins. Importantly our model suggests high levels of cholesterol is most alarming in the tissue, not the blood. In fact, rapidly dropping cholesterol in the blood may indicate severe loading of cholesterol in peripheral tissue and a dangerous situation for escalated SARS-CoV-2 infectivity. Polyunsaturated fatty acids (PUFAs) oppose the effects of cholesterol and provide a molecular basis for eating healthy diets to avoid severe cases of COVID19.
Expression of the human immunodeficiency virus type 1 genome requires several cellular factors regulating transcription, alternative splicing, RNA stability, and intracellular localization of the viral transcripts. In vitro and ex vivo approaches have identified SR proteins and hnRNPs of the A/B and H subfamilies as cellular factors that regulate different aspects of viral mRNA metabolism. To understand the role of these protein families within the context of the full replicating virus, we altered the expression levels of hnRNPs H, F, 2H9, GRSF1, A1, A2, and A3 and SR proteins SC35, SF2, and SRp40 in HEK 293 cells transfected with the proviral clone pNL4-3. Quantitative and semiquantitative PCR analyses showed that overexpression as well as downregulation of these proteins disrupted the balance of alternatively spliced viral mRNAs and may alter viral transcription. Furthermore, expression of hnRNPs H, F, 2H9, A1, and A2 and SR proteins SF2 and SRp40 increased nuclear localization of the unspliced Gag/Pol mRNA, while the same factors increased the cytoplasmic localization of the partially spliced Env mRNA. We also report that overexpression of hnRNPs A1 and A2 and SR proteins SF2, SC35, and SRp40 causes a dramatic decrease in virion production. Finally, utilizing a reporter TZM-bl cell line, we show that virion infectivity may be also impacted by deregulation of expression of most SR proteins and hnRNPs. This work demonstrates that cellular factors regulating mRNA processing have wide-ranging effects on human immunodeficiency virus type 1 replication and should be considered novel therapeutic targets.The complex mechanisms that regulate human immunodeficiency virus type 1 (HIV-1) replication utilize both cellular and viral factors, which interact with several cis-acting elements located within the viral genome. Processing of the HIV-1 transcript provides an important model for human RNA processing pathways and can be key in the characterization of novel therapeutic targets to block viral replication. Transcription of the integrated viral genome generates a single transcript and is mediated by several transcription factors and the viral protein Tat (3, 31). The viral transcript undergoes a complex series of splicing events to generate 22 different mRNAs of approximately 4 kb coding for the Env, Vpu, Vpr, and Vif proteins and 22 different mRNAs of approximately 2 kb coding for the Tat, Rev, Vpr, and Nef proteins ( Fig. 1) (33). The unspliced 9-kb mRNA codes for the Gag and Gag/Pol polyproteins and is packaged within the nascent virions as a viral genome. Alteration of the balanced splicing of the viral mRNAs can have dramatic effects on viral replication and infectivity (20,33,39). HIV-1 splicing regulation relies on the presence of intronic and exonic sequences as well as cellular splicing factors that interact with these elements. To date, four exonic splicing silencers, one intronic splicing silencer, and four splicing exonic enhancers have been identified (37).In addition to having a complex arrangement of spli...
HIV-1 Tat protein has been shown to have a crucial role in HIV-1-associated neurocognitive disorders (HAND), which includes a group of syndromes ranging from undetectable neurocognitive impairment to dementia. The abuse of psychostimulants, such as cocaine, by HIV infected individuals, may accelerate and intensify neurological damage. On the other hand, exposure to Tat potentiates cocaine-mediated reward mechanisms, which further promotes HAND. Here, we show that didehydro-Cortistatin A (dCA), an analog of a natural steroidal alkaloid, crosses the blood-brain barrier, cross-neutralizes Tat activity from several HIV-1 clades and decreases Tat uptake by glial cell lines. In addition, dCA potently inhibits Tat mediated dysregulation of IL-1β, TNF-α and MCP-1, key neuroinflammatory signaling proteins. Importantly, using a mouse model where doxycycline induces Tat expression, we demonstrate that dCA reverses the potentiation of cocaine-mediated reward. Our results suggest that adding a Tat inhibitor, such as dCA, to current antiretroviral therapy may reduce HIV-1-related neuropathogenesis.
Tat activates virus production, and limited Tat transactivation correlates with HIV-1 latency. The Tat inhibitor dCA locks HIV in persistent latency. This drug class enables block-and-lock functional cure approaches, aimed at reducing residual viremia during therapy and limiting viral rebound. dCA may also have additional therapeutic benefits since Tat is also neurotoxic. Unfortunately, Tat inhibitors are not clinically available. We generated chemical derivatives and rationalized binding to an active and specific Tat conformer. dCA features required for Tat inhibition are distinct from features needed for inhibition of cyclin-dependent kinase 8 (CDK8), the only other known target of dCA. Furthermore, knockdown of CDK8 did not impact dCA’s activity on HIV-1 transcription. Binding of dCA to Tat’s basic domain altered the local protein environment and rendered Tat more resistant to proteolytic digestion. dCA locks a transient conformer of Tat, blocking functions dependent on its basic domain, namely its ability to amplify viral transcription. Our results define dCA’s mode of action, support structure-based-design strategies targeting Tat, and provide valuable information for drug development around the dCA pharmacophore.
HIV-1 gene expression requires both viral and cellular factors to control and coordinate transcription. While the viral factor Tat is known for its transcriptional transactivator properties, we present evidence for an unexpected function of Tat in viral splicing regulation. We used a series of HIV-1 reporter minigenes to demonstrate that Tat’s role in splicing is dependent on the cellular co-transcriptional splicing activators Tat-SF1 and CA150. Surprisingly, we show that this Tat-mediated splicing function is independent from transcriptional activation. In the context of the full-length viral genome, this mechanism promotes an autoregulatory feedback that decreases expression of tat and favors expression of the env-specific mRNA. Our data demonstrate that Tat-mediated regulation of transcription and splicing can be uncoupled and suggest a mechanism for the involvement of specific transcriptional activators in splicing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.