A tripropargylammonium surfactant with a methacrylate-terminated hydrophobic tail was combined with a bile salt derivative, divinyl benzene (DVB), and a photo-cross-linker above its critical micelle concentration (CMC). Surface-cross-linking with a diazide, surface-functionalization with an azido sugar derivative, and free-radical-core-cross-linking under UV irradiation yielded molecularly imprinted nanoparticles (MINPs) with template-specific binding pockets. The MINPs resemble protein receptors in size, complete watersolubility, and tailored binding sites in their hydrophobic cores. Strong and selective binding of bile salt derivatives was obtained, depending on the cross-linking density of the system. Disciplines Chemistry CommentsReprinted (adapted) ABSTRACT: A tripropargylammonium surfactant with a methacrylate-terminated hydrophobic tail was combined with a bile salt derivative, divinyl benzene (DVB), and a photo-cross-linker above its critical micelle concentration (CMC). Surface-cross-linking with a diazide, surfacefunctionalization with an azido sugar derivative, and freeradical-core-cross-linking under UV irradiation yielded molecularly imprinted nanoparticles (MINPs) with template-specific binding pockets. The MINPs resemble protein receptors in size, complete water-solubility, and tailored binding sites in their hydrophobic cores. Strong and selective binding of bile salt derivatives was obtained, depending on the cross-linking density of the system. M
A general method for sequence-specific binding of peptides remains elusive despite decades of research. By creating an array of “hydrophobically coded dimples” on the surface of a surface–core doubly cross-linked micelle, we synthesized water-soluble nanoparticle receptors to recognize peptides by the location, number, and nature of their hydrophobic side chains. Minute differences in the side chains could be distinguished and affinities up to 20 nM were obtained for biologically active oligopeptides in water.
Construction of receptors with binding sites of specific size, shape, and functional groups is important to both chemistry and biology. Covalent imprinting of a photocleavable template within surface-core doubly cross-linked micelles yielded carboxylic acid-containing hydrophobic pockets within the water-soluble molecularly imprinted nanoparticles. The functionalized binding pockets were characterized by their binding of amine- and acid-functionalized guests under different pH values. The nanoparticles, on average, contained one binding site per particle and displayed highly selective binding among structural analogues. The binding sites could be modified further by covalent chemistry to modulate their binding properties.
Herein we describe a nucleic acid functionalized nanocapsule in which nucleic acid ligands are assembled and disassembled in the presence of enzymes. The particles are fully degradable in response to esterases due to an embedded ester cross-linker in the particle's core. During synthesis the nanocapsules can be loaded with hydrophobic small molecules and post self-assembly undergo covalent cross-linking using copper catalyzed click chemistry. They can then be functionalized with thiolated DNA through stepwise thiolyne chemistry using UV light irradiation. Additionally, the capsule is compatible with enzyme mediated functionalization of a therapeutic mRNA-cleaving DNAzyme at the particle's surface. The resulting particle is highly stable, monodisperse in size, and maximizes the therapeutic potential of both the particles interior and exterior.
The wide usage and subsequent leakage of nonsteroidal anti-inflammatory drugs (NSAIDs) into the environment present an urgent need to create materials for selective binding of NSAID drugs, which are highly similar to one another in structure and functionality. Surface-core double-cross-linking of cationic micelles containing Naproxen or Indomethacin as the template yielded molecularly imprinted nanoparticles (MINPs) for these drugs. The nanoparticle receptors resembled water-soluble proteins in their hydrophilic exterior and hydrophobic core with guest-tailored binding pockets. Their binding selectivity for their templates over other NSAID analogues rivaled that of antibodies prepared through much lengthier procedures. ABSTRACT: The wide usage and subsequent leakage of nonsteroidal anti-inflammatory drugs (NSAIDs) into the environment present an urgent need to create materials for selective binding of NSAID drugs, which are highly similar to one another in structure and functionality. Surface−core double-cross-linking of cationic micelles containing Naproxen or Indomethacin as the template yielded molecularly imprinted nanoparticles (MINPs) for these drugs. The nanoparticle receptors resembled water-soluble proteins in their hydrophilic exterior and hydrophobic core with guesttailored binding pockets. Their binding selectivity for their templates over other NSAID analogues rivaled that of antibodies prepared through much lengthier procedures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.