A new mathematical model is presented for representing the tolerances of planar surfaces. The model is compatible with the ASME Standard for geometric tolerances. Central to the new model is a Tolerance-Map®,1 a hypothetical volume of points which corresponds to all possible locations and variations of a segment of a plane which can arise from tolerances on size, form, and orientation. Every Tolerance-Map is a convex set. This model is one part of a bi-level model that we are developing for geometric tolerances. The new model makes stackup relations apparent in an assembly, and these can be used to allocate size and orientational tolerances; the same relations also can be used to identify sensitivities for these tolerances. Stackup relations are developed for parts where the centers of faces are offset laterally. All stackup relations can be met for 100% interchangeability or for a specified probability. Methods are introduced whereby designers can identify trade-offs and optimize the allocation of tolerances. Examples are presented that illustrate important features of the new model.
A new mathematical model for representing geometric tolerances is applied to polygonal faces and is extended to show its sensitivity to the precedence (ordering) of datum reference frames. The model is compatible with the ASME/ISO Standards for geometric tolerances. Central to the new model is a Tolerance-Map®2, a hypothetical volume of points that corresponds to all possible locations and variations of a segment of a plane which can arise from tolerances on size, position, form, and orientation. Every Tolerance-Map is a convex set. This model is one part of a bi-level model that we are developing for geometric tolerances. The new model makes stackup relations apparent in an assembly, and these can be used to allocate size and orientational tolerances; the same relations also can be used to identify sensitivities for these tolerances. All stackup relations can be met for 100% interchangeability or for a specified probability. Methods are introduced whereby designers can identify trade-offs and optimize the allocation of tolerances. Examples are presented that illustrate important features of the new model.
A new mathematical model is presented for the tolerances of planar surfaces. The model is compatible with the ASME Standard for geometric tolerances. Central to the new model is a Tolerance-Map, a hypothetical volume of points which corresponds to all possible locations and variations of a segment of a plane which can arise from tolerances on size, form, and orientation. Every Tolerance-Map®2 is a convex set. This model is one part of a bi-level model that we are developing for geometric tolerances. The new model makes stackup relations apparent in an assembly, and these can be used to allocate size and orientational tolerances; the same relations also can be used to identify sensitivities for these tolerances. Stackup relations are developed for parts where the centers of faces are offset laterally. All stackup relations can be met for 100% interchangeability or for a specified probability. Methods are introduced whereby designers can identify trade-offs and optimize the allocation of tolerances. Examples are presented that illustrate important features of the new model.
This paper reviews four major methods for tolerance analysis and compares them. The methods discussed are: (1) one-dimensional tolerance charts; (2) parametric tolerance analysis, especially parametric analysis based on the Monte Carlo simulation; (3) vector loop (or kinematic) based tolerance analysis; and (4) ASU Tolerance-Map® (T-Map®) (Patent pending; nonprovisional patent application number: 09/507, 542 (2002)) based tolerance analysis. Tolerance charts deal with worst-case tolerance analysis in one direction at a time and ignore possible contributions from the other directions. Manual charting is tedious and error prone, hence, attempts have been made for automation. The parametric approach to tolerance analysis is based on parametric constraint solving; its inherent drawback is that the accuracy of the simulation results are dependent on the user-defined modeling scheme, and its inability to incorporate all Y14.5 rules. The vector loop method uses kinematic joints to model assembly constraints. It is also not fully consistent with Y14.5 standard. The ASU T-Map® based tolerance analysis method can model geometric tolerances and their interaction in truly three-dimensional context. It is completely consistent with Y14.5 standard but its use by designers may be quite challenging. The T-Map® based tolerance analysis method is still under development. Despite the shortcomings of each of these tolerance analysis methods, each may be used to provide reasonable results under certain circumstances. Through a comprehensive comparison of these methods, this paper will offer some recommendations for selecting the best method to use for a given tolerance accumulation problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.