The role of electrocardiogram (ECG) as a noninvasive technique for detecting and diagnosing cardiac problems cannot be overemphasized. This paper introduces a fuzzy C-mean (FCM) clustered probabilistic neural network (PNN) for the discrimination of eight types of ECG beats. The performance has been compared with FCM clustered multi layered feed forward network (MLFFN) trained with back propagation algorithm. Important parameters are extracted from each ECG beat and feature reduction has been carried out using FCM clustering. The cluster centers form the input of neural network classifiers. The extensive analysis using the MIT-BIH arrhythmia database has shown an average classification accuracy of 97.54% with FCM clustered MLFFN and 99.58% with FCM clustered PNN. Fuzzy clustering improves the classification speed as well. The result reveals the capability of the FCM clustered PNN in the computer-aided diagnosis of ECG abnormalities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.