We tested the effectiveness of the rosemary oil-based insecticide, Eco-Exempt IC2, to control all stages of Ixodes scapularis (Say) in southern Maine. We selected plots in oak-pine forest where I. scapularis is endemic and recorded the abundance of ticks and nontarget arthropods before and after applications of IC2, bifenthrin (a synthetic pyrethroid), and water (reference treatment). Licensed applicators applied high-pressure spray treatments during the summer nymphal and fall adult seasonal peaks. Both acaricides sprayed during the summer nymphal season reduced nymphal I. scapularis/hour to zero. IC2 was as effective as bifenthrin in controlling nymphs through the rest of the nymphal season and also controlled adult ticks 9 mo postspray compared with 16 mo for bifenthrin, and both acaricides reduced larvae through 14 mo postspray. Both acaricides sprayed during the fall adult season reduced adult I. scapularis/hour to zero; IC2 controlled adult ticks 6 mo postspray compared with 1 yr for bifenthrin. Both fall-applied acaricides controlled nymphs 9 mo postspray and reduced larvae up to 10 mo postspray. Impacts on some nontarget arthropods was assessed. Colleoptera, Hymenoptera, and Collembola declined 1 wk postspray in acaricide-treated plots, and in IC2 plots all numbers rebounded by 20 d postspray. For bees and other flower-visiting insects there were no detectable reductions in nests produced, number emerged from nests, or number of foraging visits to flowering plants in IC2 or bifenthrin plots. IC2 was phytotoxic to the leafy portions of select understory plants that appeared to recover by the next growing season.
Females of the pine false webworm Acantholyda erythrocephala (L) produce the sex pheromone (Z)-6, 14-pentadecadienal, which attracts flying males in the field. By using gas chromatography coupled with electroantennographic detection (GC-EAD) and mass spectrometry (GC-MS), we detected (Z)-6,14-pentadecadienal in volatile collections and in whole body extracts of female A. erythrocephala. Females, but not males, also exhibited a 25-carbon cuticular hydrocarbon, (Z,Z)-1,9,15-pentacosatriene, which can oxidize to (Z)-6,14-pentadecadienal upon exposure to air and sunlight. (Z,Z)-1,9,15-Pentacosatriene and (Z)-6,14-pentadecadienal identifications were corroborated by comparison with synthetic standards. (Z)-6, 14-Pentadecadienal is the second pheromone identified for pamphilliid sawflies, and the first to elicit strong field attraction, and thus offer potential as a pheromone lure to aid in control of this forest pest.
Secretions from the metathoracic glands (MTG) of the black locust bug, Lopidea robiniae (Uhler) (Heteroptera: Miridae) contained six major compounds, including (E)-2-hexenal, (E)-2-hexen-1-ol, (E)-2-octenal, (E)-2-octen-1-ol (E)-2-heptenal, and (Z)-3-octen-1-ol. Males and females did not differ significantly in the relative compositions of identified compounds. In feeding trials, six bird species [robin (Turdus migratorious), blue jay (Cyanocitta cristata), brown thrasher (Toxostoma rufum), killdeer (Charadrius vociferus), starling (Sturnus vulgaris), and house wren (Troglodytes aedon)] demonstrated feeding aversions towards L. robiniae implying that black locust bugs are chemically defended. Bugs discharged the liquid contents of their MTG when attacked, thereby producing a strong and distinct odor. Some birds immediately ejected bugs out of their mouth after biting them, suggesting that the MTG secretion was a deterrent.
Global declines of bumble bees place natural and agricultural ecosystems at risk. Given bumble bees importance to Maine’s major agricultural crops, we conducted a statewide, quantitative survey of bumble bee species seasonal and ecoregional abundance, richness, diversity, and floral resource use. We recorded 11 Bombus species at 40 survey sites across Maine’s three ecoregions, with Bombus ternarius Cresson, 1863 and Bombus impatiens Cresson, 1863 being the most common and Bombus citrinus Smith, 1854 the least commonly encountered. Bumble bee species richness did not differ as a function of ecoregion, but did decline over the season, while species diversity differed by ecoregion and also declined over the season. Multiple response permutation procedure (MRPP) indicated ecoregional differences in species composition of bumble bee assemblages and nonmetric multidimensional scaling produced a stable ordination suggesting assemblage differences were associated with survey site variables including forage plant cover, forage plant richness, elevation, development, and deciduous forest cover. Both MRPP and correspondence analysis also revealed differences in the floral resources utilized by bumble bee species in each ecoregion. Low connectance and nestedness levels indicated low stability pollinator networks in each ecoregion, suggesting Maine bumble bee assemblages may be at risk of decline in response to additional external perturbations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.