Antioxidant nutrients from fruits and vegetables are believed to be a class of compounds that exert their effects in humans by preventing oxidative processes which contribute to the onset of several degenerative diseases. This study found a new class of dietary cationized antioxidants in red beets (Beta vulgaris L.). These antioxidants are betalains, and the major one, betanin, is a betanidin 5-O-beta-glucoside. Linoleate peroxidation by cytochrome c was inhibited by betanin, betanidin, catechin, and alpha-tocopherol with IC(50) values of 0.4, 0.8, 1.2, and 5 microM, respectively. In addition, a relatively low concentration of betanin was found to inhibit lipid peroxidation of membranes or linoleate emulsion catalyzed by the "free iron" redox cycle, H(2)O(2)-activated metmyoglobin, or lipoxygenase. The IC(50) inhibition of H(2)O(2)-activated metmyoglobin catalysis of low-density lipoprotein oxidation by betanin was <2.5 microM and better than that of catechin. Betanin and betanidin at very small concentrations were found to inhibit lipid peroxidation and heme decomposition. During this reaction, betanidin was bleached completely, but betanin remained unchanged in its absorption. This difference seems to derive from differing mechanisms of protection by these two compounds. The high affinity of betanin and betanidin for membranes was demonstrated by determining the rate of migration of the compounds through a dialysis tube. Betanin bioavailability in humans was demonstrated with four volunteers who consumed 300 mL of red beet juice, containing 120 mg of the antioxidant. The betacyanins were absorbed from the gut and identified in urine after 2-4 h. The calculated amount of betacyanins found in the urine was 0.5-0.9% of that ingested. Red beet products used regularly in the diet may provide protection against certain oxidative stress-related disorders in humans.
The viable counts of Salmonella typhimurium on nutrient agar (NA) decreased upon the addition of either the essential oil of thyme or its constituent thymol, especially under anaerobic conditions. Antagonistic effects of thymol against Staphylococcus aureus were also greater under anaerobic conditions. In contrast to the phenolic constituents of the oil, thymol and carvacrol, the chemically related terpenes p-cymene and gamma-terpinene had no antagonistic effects against Salm. typhimurium. The addition of Desferal to NA counteracted the antibacterial effects of both thyme oil and thymol. No support was obtained, however, for a possible role of iron in the oxygen-related antibacterial action of the thyme oil and thymol or for the observed effect of Desferal. In the presence of thymol, the viable counts of Salm. typhimurium obtained on a minimal medium (MM) were lower than those obtained on NA. Addition of bovine serum albumin (BSA) neutralized the antibacterial action of thymol. It is suggested that the effects of BSA or Desferal are due to their ability to bind phenolic compounds through their amino and hydroxylamine groups, respectively, thus preventing complexation reactions between the oil phenolic constituents and bacterial membrane proteins. This hypothesis is supported by the marked decrease in the viable counts of Salm. typhimurium caused by either thyme oil or thymol when the pH of the medium was changed from 6.5 to 5.5 or the concentration of Tween 80 in the medium was reduced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.