The prostate‐specific membrane antigen (PSMA) has been demonstrated in numerous studies to be expressed specifically on prostate carcinoma cells and on the neovasculature of several other cancer entities. However, the simultaneous expression of PSMA on both, tumor cells as well as tumor vessels remains unclear, even if such “dual” expression would constitute an important asset to facilitate sufficient influx of effector cells to a given tumor site. We report here on the generation of a PSMA antibody, termed 10B3, which exerts superior dual reactivity on sections of prostate carcinoma and squamous cell carcinoma of the lung. 10B3 was used for the construction of T‐cell recruiting bispecific PSMAxCD3 antibodies in Fab‐ and IgG‐based formats, designated Fabsc and IgGsc, respectively. In vitro, both molecules exhibited comparable activity. In contrast, only the larger IgGsc molecule induced complete and durable elimination of established tumors in humanized mice due to favorable pharmacokinetic properties. Upon treatment of three patients with metastasized prostate carcinoma with the IgGsc reagent, marked activation of T cells and rapid reduction of elevated PSA levels were observed.
Bispecific antibodies (bsAb) and chimeric antigen receptor (CAR) T cells allow for antibody guided recruitment of T cells against tumors. Both are successfully used for treatment of CD19 expressing leukemias, but may cause cytokine release syndrome (CRS) as a major dose-limiting side effect. For CRS prevention, steroids are recommended prior to bsAb treatment, despite their well-known lymphotoxic activity. The IL-6 receptor antibody tocilizumab is established for treatment of CRS induced by CAR T cells, but was not considered for CRS prevention in bsAb therapy. We here compared the influence of dexamethasone and tocilizumab on bsAb-mediated T cell proliferation and tumor lysis in vitro and in vivo and found that dexamethasone profoundly inhibited T cell proliferation and antitumor activity as induced by two different bsAb, particularly at low effector:target ratios, whereas tocilizumab did not affect efficacy. When we applied tocilizumab early during treatment of three patients with a newly developed PSMAxCD3 bsAb, significant CRS attenuation despite high IL-6 serum levels was observed. Thus, early IL-6 blockade may reduce the undesired sequelae of CRS upon bsAb therapy without affecting therapeutic activity, allowing in turn for safe application of effective doses.
While several genetic and morphological markers are established and serve to guide therapy of acute myeloid leukaemia (AML), there is still profound need to identify additional markers to better stratify patients. CD105 (Endoglin) is a type I transmembrane protein reported to induce activation and proliferation of endothelial cells. In addition, CD105 is expressed in haematological malignancies and the vessels of solid tumours. Here, CD105 associates with unfavourable disease course, but so far no data are available on the prognostic relevance of CD105 in haematological malignancies. We here generated a novel CD105 antibody for analysis of expression and prognostic relevance of CD105 in a cohort of 62 AML patients. Flow cytometric analysis revealed substantial expression in the various AML FAB types, with FAB M3 type displaying significantly lower surface levels. Next we established a cut-off specific fluorescence level of 5.22 using receiver-operating characteristics, which allowed to group patients in cases with CD105lo and CD105hi surface expression and revealed that high CD105 expression correlated significantly with poor overall and progression free survival. In conclusion, we here identify CD105 expression as a novel prognostic marker in AML, which may serve to optimize follow up and treatment decisions for AML patients.
BackgroundIn lymphoid malignancies, the introduction of chimeric antigen receptor T (CAR-T) cells and bispecific antibodies (bsAbs) has achieved remarkable clinical success. However, such immunotherapeutic strategies are not yet established for acute myeloid leukemia (AML), the most common form of acute leukemia in adults. Common targets in AML such as CD33, CD123, and CLEC12A are highly expressed on both AML blasts and on normal myeloid cells and hematopoietic stem cells (HSCs), thereby raising toxicity concerns. In B-cell acute lymphoblastic leukemia (B-ALL), bsAbs and CAR-T therapy targeting CD19 and CD22 have demonstrated clinical success, but resistance via antigen loss is common, motivating the development of agents focused on alternative targets. An attractive emerging target is FLT3, a proto-oncogene expressed in both AML and B-ALL, with low and limited expression on myeloid dendritic cells and HSCs.MethodsWe developed and characterized CLN-049, a T cell-activating bsAb targeting CD3 and FLT3, constructed as an IgG heavy chain/scFv fusion. CLN-049 binds the membrane proximal extracellular domain of the FLT3 protein tyrosine kinase, which facilitates the targeting of leukemic blasts regardless of FLT3 mutational status. CLN-049 was evaluated for preclinical safety and efficacy in vitro and in vivo.ResultsCLN-049 induced target-restricted activation of CD4+ and CD8+ T cells. AML cell lines expressing a broad range of surface levels of FLT3 were efficiently lysed on treatment with subnanomolar concentrations of CLN-049, whereas FLT3-expressing hematopoietic progenitor cells and dendritic cells were not sensitive to CLN-049 killing. Treatment with CLN-049 also induced lysis of AML and B-ALL patient blasts by autologous T cells at the low effector-to-target ratios typically observed in patients with overt disease. Lysis of leukemic cells was not affected by supraphysiological levels of soluble FLT3 or FLT3 ligand. In mouse xenograft models, CLN-049 was highly active against human leukemic cell lines and patient-derived AML and B-ALL blasts.ConclusionsCLN-049 has a favorable efficacy and safety profile in preclinical models, warranting evaluation of its antileukemic activity in the clinic.
IntroductionProstate cancer is the second most common cancer in men worldwide. When the disease becomes resistant to androgen-deprivation therapy, treatment options are sparse. To address the high medical need in castration-resistant prostate cancer (CRPC), we generated a novel PSMAxCD3 bispecific antibody termed CC-1. CC-1 binds to prostate-specific membrane antigen that is expressed on prostate cancer cells and tumour vessels, thereby allowing a dual anticancer effect.Methods and analysisThis first in human clinical study is a prospective and multicentre trial which enrols patients with metastatic CRPC after failure of established third-line therapy. CC-1 is applied after prophylactic interleukin-6 receptor blockade with tocilizumab (once 8 mg/kg body weight). Each patient receives at least one cycle of CC-1 over a time course of 7 days in an inpatient setting. If clinical benefit is observed, up to five additional cycles of CC-1 can be applied. The study is divided in two parts: (1) a dose escalation phase with intraindividual dose increase from 28 µg to the target dose of 1156 µg based on a modified fast titration design by Simon et al to determine safety, tolerability and the maximum tolerated dose (MTD) as primary endpoints and (2) a dose expansion phase with additional 14 patients on the MTD level of part (1) to identify first signs of efficacy. Secondary endpoints compromise overall safety, tumour response, survival and a translational research programme with, among others, the analysis of CC-1 half-life, the induced immune response, as well as the molecular profiling in liquid biopsies.Ethics and disseminationThe PSMAxCD3 study was approved by the Ethics Committee of The University Hospital Tübingen (100/2019AMG1) and the Paul-Ehrlich-Institut (3684/02). Clinical trial results will be published in peer-reviewed journals.Trial registration numbersClinicalTrials.gov Registry (NCT04104607) and ClinicalTrials.eu Registry (EudraCT2019-000238-20).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.