The overexpression of multidrug efflux pumps is an important mechanism of clinical resistance in Gram-negative bacteria. Recently, four small molecules were discovered that inhibit efflux in Escherichia coli and interact with the AcrAB-TolC efflux pump component AcrA. However, the binding site(s) for these molecules was not determined. Here, we combine ensemble docking and molecular dynamics simulations with tryptophan fluorescence spectroscopy, site-directed mutagenesis, and antibiotic susceptibility assays to probe binding sites and effects of binding of these molecules. We conclude that clorobiocin and SLU-258 likely bind at a site located between the lipoyl and b-barrel domains of AcrA.
Fluorescence technologies have been the preferred method for detection, analytical sensing, medical diagnostics, biotechnology, imaging, and gene expression for many years. Fluorescence becomes essential for studying molecular processes with high specificity and sensitivity through a variety of biological processes. A significant problem for practical fluorescence applications is the apparent non-linearity of the fluorescence intensity resulting from inner-filter effects, sample scattering, and absorption of intrinsic components of biological samples. Sample absorption can lead to the primary inner filter effect (Type I inner filter effect) and is the first factor that should be considered. This is a relatively simple factor to be controlled in any fluorescence experiment. However, many previous approaches have given only approximate experimental methods for correcting the deviation from expected results. In this part we are discussing the origin of the primary inner filter effect and presenting a universal approach for correcting the fluorescence intensity signal in the full absorption range. Importantly, we present direct experimental results of how the correction works. One considers problems emerging from varying absorption across its absorption spectrum for all fluorophores. We use Rhodamine 800 and demonstrate how to properly correct the excitation spectra in a broad wavelength range. Second is the effect of an inert absorber that attenuates the intensity of the excitation beam as it travels through the cuvette, which leads to a significant deviation of observed results. As an example, we are presenting fluorescence quenching of a tryptophan analog, NATA, by acrylamide and we show how properly corrected results compare to the initial erroneous results. The procedure is generic and applies to many other applications like quantum yield determination, tissue/blood absorption, or acceptor absorption in FRET experiments.
Fluorescence properties of a novel homodimeric BODIPY dye rotor for Fluorescence Lifetime Imaging Microscopy (FLIM) are reported. Steady state and time resolved fluorescence measurements established the viscosity dependant behaviour in vitro. Homodimeric BODIPY embedded in different membrane mimicking lipid vesicles (DPPC, POPC and POPC plus cholesterol) demonstrated to be a viable sensor for fluorescence lifetime based viscosity measurements. Moreover, SKOV3 cells readily endocytosed the dye, which accumulated in membranous structures inside cytoplasm thereby allowing viscosity mapping of internal cell components.
Structure of the cationic and anionic counterparts of ionic liquids has a significant impact on the conformational bias of the porphyrin rotor; an apparent correlation between the conformation and the viscosity of ionic liquids was noted, albeit it was found to be distinct and more complex from that found in molecular solvents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.