JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.. The MIT Press is collaborating with JSTOR to digitize, preserve and extend access to The Review of Economics and Statistics.
The Cochran-Armitage trend test is commonly used as a genotype-based test for candidate gene association. Corresponding to each underlying genetic model there is a particular set of scores assigned to the genotypes that maximizes its power. When the variance of the test statistic is known, the formulas for approximate power and associated sample size are readily obtained. In practice, however, the variance of the test statistic needs to be estimated. We present formulas for the required sample size to achieve a prespecified power that account for the need to estimate the variance of the test statistic. When the underlying genetic model is unknown one can incur a substantial loss of power when a test suitable for one mode of inheritance is used where another mode is the true one. Thus, tests having good power properties relative to the optimal tests for each model are useful. These tests are called efficiency robust and we study two of them: the maximin efficiency robust test is a linear combination of the standardized optimal tests that has high efficiency and the MAX test, the maximum of the standardized optimal tests. Simulation results of the robustness of these two tests indicate that the more computationally involved MAX test is preferable.
In many applications, the underlying scientific question concerns whether the variances of k samples are equal. There are a substantial number of tests for this problem. Many of them rely on the assumption of normality and are not robust to its violation. In 1960 Professor Howard Levene proposed a new approach to this problem by applying the F -test to the absolute deviations of the observations from their group means. Levene's approach is powerful and robust to nonnormality and became a very popular tool for checking the homogeneity of variances.This paper reviews the original method proposed by Levene and subsequent robust modifications. A modification of Levene-type tests to increase their power to detect monotonic trends in variances is discussed. This procedure is useful when one is concerned with an alternative of increasing or decreasing variability, for example, increasing volatility of stocks prices or "open or closed gramophones" in regression residual analysis. A major section of the paper is devoted to discussion of various scientific problems where Levene-type tests have been used, for example, economic anthropology, accuracy of medical measurements, volatility of the price of oil, studies of the consistency of jury awards in legal cases and the effect of hurricanes on ecological systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.