Background Conversion, fragmentation, and loss of natural habitats are among the main causes of declining species’ populations worldwide. Protected areas are therefore crucial for biodiversity as they provide refuge and ensure key ecological processes. Wildlife translocations, defined as “the deliberate movement of organisms from one site for release in another”, have been used in conjunction as a conservation tool for a number of decades as wild populations become increasingly fragmented and endangered. Not only are translocations used to bolster the viability of imperiled species but are also recommended for improving population resilience and adapting species’ ranges in response to climate change. Despite translocation being a recognised conservation tool, it remains complex with variable results due to the different factors that can determine its success. Accordingly, the Map will investigate the existing evidence on the links between different types of wildlife translocation interventions and factors that may be important to consider for planning. This will provide an overview of relevant studies for possible future syntheses, and may help to inform management decisions. Method We will perform a thorough search of peer-reviewed journal articles and grey literature sources documenting the occurrence of translocations in the context of protected areas. Two databases will be used: Web of science core collection and Scopus, with a supplementary search in Google Scholar. Multiple key specialized websites will also be used. All bibliographic data will be extracted, managed, and screened in Microsoft excel. Three screening stages will be undertaken (title, then abstract, then full texts) against predefined inclusion criteria. The retained relevant literature will be subjected to coding and meta-data extraction. No formal validity appraisal will be undertaken. The Map will particularly highlight translocation operations in terms of origin and destination (i.e. translocating from one protected area to another, within the same area, and from and to non-protected areas) by taxonomic group, among other important factors (e.g. number of individuals, age class, release strategy, distance between capture and release sites etc.). Finally, a database will be provided along with a Map narratively describing the evidence with summary figures and tables of pertinent study characteristics.
Forests offer important refuge to bats by providing attractive roosting and foraging habitats. Their conservation is a major responsibility of forest managers. The use of tree cavities by bats in forests depends on the specific demands of each species, with a large range of different types of microhabitats utilised, from degraded cavities such as peeling bark to healthy hollows in live trees ensuring the temporal stability of the habitat. The conservation of tree-dwelling bats should not be dissociated from their fission-fusion behaviour which involves the use of many different roosts. Conservation measures must therefore take into account forest habitats suitable for feeding and in particular, forest parameters such as structure, composition, vegetation and foliage, among other elements such as deadwood, all upon which the forest manager can intervene. Acting in favour of bats requires close consideration of their complex individual responses concerning roost selection and foraging habitat selection, which is largely dictated by the reproductive status of individuals. Thereafter it is possible to evaluate the impact of wood harvesting on bats and to infer silvicultural conservation measures. The implementation of recommendations must then subsequently be based on a strong involvement on the part of the forest manager.
Background The current biodiversity crisis calls for an urgent need to sustainably manage human uses of nature. The Ecosystem Services (ES) concept defined as « the benefits humans obtain from nature » support decisions aimed at promoting nature conservation. However, marine ecosystems, in particular, endure numerous direct pressures (e.g., habitat loss and degradation, overexploitation, pollution, climate change, and the introduction of non-indigenous species) all of which threaten ecosystem structure, functioning, and the very provision of ES. While marine ecosystems often receive less attention than terrestrial ecosystems in ES literature, it would also appear that there is a heterogeneity of knowledge within marine ecosystems and within the different ES provided. Hence, a systematic map on the existing literature will aim to highlight knowledge clusters and knowledge gaps on how changes in marine ecosystems influence the provision of marine ecosystem services. This will provide an evidence base for possible future reviews, and may help to inform eventual management and policy decision-making. Methods We will search for all evidence documenting how changes in structure and functioning of marine ecosystems affect the delivery of ES, across scientific and grey literature sources. Two bibliographic databases, Scopus and Web of Science Core Collection, will be used with a supplementary search undertaken in Google scholar. Multiple organisational websites related to intergovernmental agencies, supra-national or national structures, and NGOs will also be searched. Searches will be performed with English terms only without any geographic or temporal limitations. Literature screening, against predefined inclusion criteria, will be undertaken on title, abstract, and then full texts. All qualifying literature will be subjected to coding and meta-data extraction. No formal validity appraisal will be undertaken. Indeed, the map will highlight how marine ecosystem changes impact the ES provided. Knowledge gaps will be identified in terms of which ecosystem types, biodiversity components, or ES types are most or least studied and how these categories are correlated. Finally, a database will be provided, we will narratively describe this evidence base with summary figures and tables of pertinent study characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.