Background: Hypoxia inducible factor-α (HIF-α) is the main transcription factor activated in low oxygen conditions.Results: Single cell imaging reveals pulses in nuclear levels of HIF-α.Conclusion: The transient nature of the HIF-α nuclear accumulation is required to avoid cell death.Significance: The duration of HIF-α response depends on cellular oxygenation, and can encode information and dictate cell fate.
Xenobiotic safety assessment is an area that impacts a multitude of different industry sectors such as medicinal drugs, agrochemicals, industrial chemicals, cosmetics and environmental contaminants. As such there are a number of well-developed in vitro, in vivo and in silico approaches to evaluate their properties and potential impact on the environment and to humans. Additionally, there is the continual investment in multidisciplinary scientists to explore non-animal surrogate technologies to predict specific toxicological outcomes and to improve our understanding of the biological processes regarding the toxic potential of xenobiotics. Here we provide a concise, critical evaluation of a number of in vitro systems utilised to assess the hepatotoxic potential of xenobiotics.
Many
in vitro
liver cell models, such as 2D systems, that are used to assess the hepatotoxic potential of xenobiotics suffer major limitations arising from a lack of preservation of physiological phenotype and metabolic competence. To circumvent some of these limitations there has been increased focus on producing more representative 3D models. Here we have used a novel approach to construct a size-controllable 3D hepatic spheroid model using freshly isolated primary rat hepatocytes (PRH) utilising the liquid-overlay technique whereby PRH spontaneously self-assemble in to 3D microtissues. This system produces viable spheroids with a compact
in vivo
-like structure for up to 21 days with sustained albumin production for the duration of the culture period. F-actin was seen throughout the spheroid body and P-glycoprotein (P-gp) and multidrug resistance-associated protein 2 (MRP2) transporters had polarised expression on the canalicular membrane of hepatocytes within the spheroids upon formation (day 3). The MRP2 transporter was able to functionally transport 5 μM 5-chloromethylfluorescein diacetate (CMFDA) substrates into these canalicular structures. These PRH spheroids display
in vivo
characteristics including direct cell-cell contacts, cellular polarisation, 3D cellular morphology, and formation of functional secondary structures throughout the spheroid. Such a well-characterised system could be readily exploited for pre-clinical and non-clinical repeat-dose investigations and could make a significant contribution to replace, reduce and refine the use of animals for applied research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.