The magnetic field produced by planets with active dynamos, like the Earth, can exert sufficient pressure to oppose supersonic stellar wind plasmas, leading to the formation of a standing bow shock upstream of the magnetopause, or pressure-balance surface. Scaled laboratory experiments studying the interaction of an inflowing solar wind analog with a strong, external magnetic field are a promising new way to study magnetospheric physics and to complement existing models, although reaching regimes favorable for magnetized shock formation is experimentally challenging. This paper presents experimental evidence of the formation of a magnetized bow shock in the interaction of a supersonic, super-Alfvénic plasma with a strongly magnetized obstacle at the OMEGA laser facility. The solar wind analog is generated by the collision and subsequent expansion of two counter-propagating, laser-driven plasma plumes. The magnetized obstacle is a thin wire, driven with strong electrical currents. Hydrodynamic simulations using the FLASH code predict that the colliding plasma source meets the criteria for bow shock formation. Spatially resolved, optical Thomson scattering measures the electron number density, and optical emission lines provide a measurement of the plasma temperature, from which we infer the presence of a fast magnetosonic shock far upstream of the obstacle. Proton images provide a measure of large-scale features in the magnetic field topology, and reconstructed path-integrated magnetic field maps from these images suggest the formation of a bow shock upstream of the wire and as a transient magnetopause. We compare features in the reconstructed fields to two-dimensional MHD simulations of the system.
Proton imaging is a powerful technique for imaging electromagnetic fields within an experimental volume, in which spatial variations in proton fluence are a result of deflections to proton trajectories due to interaction with the fields. When deflections are large, proton trajectories can overlap, and this nonlinearity creates regions of greatly increased proton fluence on the image, known as caustics. The formation of caustics has been a persistent barrier to reconstructing the underlying fields from proton images. We have developed a new method for reconstructing the path-integrated magnetic fields, which begins to address the problem posed by caustics. Our method uses multiple proton images of the same object, each image at a different energy, to fill in the information gaps and provide some uniqueness when reconstructing caustic features. We use a differential evolution algorithm to iteratively estimate the underlying deflection function, which accurately reproduces the observed proton fluence at multiple proton energies simultaneously. We test this reconstruction method using synthetic proton images generated for three different, cylindrically symmetric field geometries at various field amplitudes and levels of proton statistics and present reconstruction results from a set of experimental images. The method we propose requires no assumption of deflection linearity and can reliably solve for fields underlying linear, nonlinear, and caustic proton image features for the selected geometries and is shown to be fairly robust to noise in the input proton intensity.
Proton imaging is a powerful tool for probing electromagnetic fields in a plasma, providing a path-integrated map of the field topology. However, in cases where the field structure is highly inhomogeneous, inferring spatial properties of the underlying field from proton images can be difficult. This problem is exemplified by recent experiments which used proton imaging to probe the filamentary magnetic field structures produced by the Weibel instability in collisionless counter-streaming plasmas. In this paper, we perform analytical and numerical analysis of proton images of systems containing many magnetic filaments. We find that, in general, the features observed on proton images do not directly correspond to the spacing between magnetic filaments (the magnetic wavelength) as has previously been assumed, and that they instead correspond to the filament size. We demonstrate this result by Fourier analysis of synthetic proton images for many randomized configurations of magnetic filaments. Our results help guide the interpretation of experimental proton images of filamentary magnetic structures in plasmas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.