This Mathematica 5.2 package 1 is a simulation of a Quantum Computer. The program provides a modular, instructive approach for generating the basic elements that make up a quantum circuit. The main emphasis is on using the density matrix, although an approach using state vectors is also implemented in the package. The package commands are defined in Qdensity.m which contains the tools needed in quantum circuits, e.g. multiqubit kets, projectors, gates, etc. Selected examples of the basic commands are presented here and a tutorial notebook, Tutorial.nb is provided with the package (available on our website) that serves as a full guide to the package. Finally, application is made to a variety of relevant cases, including Teleportation, Quantum Fourier transform, Grover's search and Shor's algorithm, in separate notebooks: QFT.nb, Teleportation.nb, Grover.nb and Shor.nb where each algorithm is explained in detail. Finally, two examples of the construction and manipulation of cluster states, which are part of "one way computing" ideas, are included as an additional tool in the notebook Cluster.nb. A Mathematica palette containing most commands in QDENSITY is also included: QDENSpalette.nb .
Abstract. We present a novel algorithm for deciding whether a given planar curve is an image of a given spatial curve, obtained by a central or a parallel projection with unknown parameters. The motivation comes from the problem of establishing a correspondence between an object and an image, taken by a camera with unknown position and parameters. A straightforward approach to this problem consists of setting up a system of conditions on the projection parameters and then checking whether or not this system has a solution. The computational advantage of the algorithm presented here, in comparison to algorithms based on the straightforward approach, lies in a significant reduction of a number of real parameters that need to be eliminated in order to establish existence or non-existence of a projection that maps a given spatial curve to a given planar curve. Our algorithm is based on projection criteria that reduce the projection problem to a certain modification of the equivalence problem of planar curves under affine and projective transformations. To solve the latter problem we make an algebraic adaptation of signature construction that has been used to solve the equivalence problems for smooth curves. We introduce a notion of a classifying set of rational differential invariants and produce explicit formulas for such invariants for the actions of the projective and the affine groups on the plane.
This Mathematica 5.2 package 1 is a simulation of a Quantum Computer. The program provides a modular, instructive approach for generating the basic elements that make up a quantum circuit. The main emphasis is on using the density matrix, although an approach using state vectors is also implemented in the package. The package commands are defined in Qdensity.m which contains the tools needed in quantum circuits, e.g. multiqubit kets, projectors, gates, etc. Selected examples of the basic commands are presented here and a tutorial notebook, Tutorial.nb is provided with the package (available on our website) that serves as a full guide to the package. Finally, application is made to a variety of relevant cases, including Teleportation, Quantum Fourier transform, Grover's search and Shor's algorithm, in separate notebooks: QFT.nb, Teleportation.nb, Grover.nb and Shor.nb where each algorithm is explained in detail. Finally, two examples of the construction and manipulation of cluster states, which are part of "one way computing" ideas, are included as an additional tool in the notebook Cluster.nb. A Mathematica palette containing most commands in QDENSITY is also included: QDENSpalette.nb .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.