As part of an effort to understand the origin of open clusters, we present a statistical analysis of the currently observed Pleiades. Starting with a photometric catalog of the cluster, we employ a maximum likelihood technique to determine the mass distribution of its members, including single stars and both components of binary systems. We find that the overall binary fraction for unresolved pairs is 68%. Extrapolating to include resolved systems, this fraction climbs to about 76%, significantly higher than the accepted field-star result. Both figures are sensitive to the cluster age, for which we have used the currently favored value of 125 Myr. The primary and secondary masses within binaries are correlated, in the sense that their ratios are closer to unity than under the hypothesis of random pairing. We map out the spatial variation of the cluster's projected and three-dimensional mass and number densities. Finally, we revisit the issue of mass segregation in the Pleiades. We find unambiguous evidence of segregation, and introduce a new method for quantifying it.Comment: 41 pages, 14 figures To Be Published in The Astrophysical Journa
We present the results of a numerical simulation of the history and future development of the Pleiades. This study builds on our previous one that established statistically the present‐day structure of this system. Our simulation begins just after molecular cloud gas has been expelled by the embedded stars. We then follow, using an N‐body code, the stellar dynamical evolution of the cluster to the present and beyond. Our initial state is that which evolves, over the 125 Myr age of the cluster, to a configuration most closely matching the current one. We find that the original cluster, newly stripped of gas, already had a virial radius of 4 pc. This configuration was larger than most observed, embedded clusters. Over time, the cluster expanded further and the central surface density fell by about a factor of 2. We attribute both effects to the liberation of energy from tightening binaries of short period. Indeed, the original binary fraction was close to unity. The ancient Pleiades also had significant mass segregation, which persists in the cluster today. In the future, the central density of the Pleiades will continue to fall. For the first few hundred Myr, the cluster as a whole will expand because of dynamical heating by binaries. The expansion process is aided by mass loss through stellar evolution, which weakens the system’s gravitational binding. At later times, the Galactic tidal field begins to heavily deplete the cluster mass. It is believed that most open clusters are eventually destroyed by close passage of a giant molecular cloud. Barring that eventuality, the density falloff will continue for as long as 1 Gyr, by which time most of the cluster mass will have been tidally stripped away by the Galactic field.
Utilizing a series of N‐body simulations, we argue that gravitationally bound stellar clusters of modest population evolve very differently from the picture presented by classical dynamical relaxation theory. The system's most massive stars rapidly sink towards the centre and form binary systems. These binaries efficiently heat the cluster, reversing any incipient core contraction and driving a subsequent phase of global expansion. Most previous theoretical studies demonstrating deep and persistent dynamical relaxation have either conflated the process with mass segregation, ignored three‐body interactions, or else adopted the artificial assumption that all cluster members are single stars of identical mass. In such a uniform‐mass cluster, binary formation is greatly delayed, as we confirm here both numerically and analytically. The relative duration of core contraction and global expansion is effected by stellar evolution, which causes the most massive stars to die out before they form binaries. In clusters of higher N, the epoch of dynamical relaxation lasts for progressively longer periods. By extrapolating our results to much larger populations, we can understand, at least qualitatively, why some globular clusters reach the point of true core collapse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.