An intra- and interlaboratory comparison of positional reproducibility of protein spots in two-dimensional electrophoresis using immobilised pH gradients (IPG) in the first dimension (IPG-DALT) was made. Aliquots of two different samples, human cardiac and barley leaf proteins, were separated in two different laboratories (London and Munich), using 180 mm long IPG gel strips, pH 4-8, for the first dimension and homogeneous SDS-PAGE gels (12% T) for the second dimension. Subsets of 340 (cardiac) and 200 (barley) well-resolved spots distributed across the 2-D gel patterns were selected for computer analysis (PDQUEST) of positional reproducibility. The IPG-dimension was highly reproducible in each laboratory, with a mean standard deviation of about 1 mm for both types of sample. Interlaboratory comparisons revealed identical results for barley with a mean standard deviation along the x-axis of about 1 mm, whereas the cardiac matchset showed slightly more variability (mean standard deviation approximately 1.5 mm). Nevertheless, IPG-DALT provides significantly improved reproducibility of spot positions compared to conventional isoelectric focusing with synthetic carrier ampholytes.
The aim of the investigation was to determine whether there are specific global quantitative and qualitative changes in protein expression in heart tissue from patients with dilated cardiomyopathy (DCM) compared with ischaemic heart disease and undiseased tissue. Two-dimensional (2-D) polyacrylamide gel electrophoresis and computer analysis was used to study protein alteration in DCM biopsy material (n=28) compared with donor heart biopsy samples (n=9) and explanted hearts from individuals suffering from ischaemic heart disease (IHD; n = 21). A total of 88 proteins displayed decreased abundance in DCM versus IHD material while five proteins had elevated levels in the DCM group (p<0.01). The most prominent changes occurred in the contractile protein myosin light chain 2 and in a group of proteins identified as desmin. These changes do not appear to be artefactual degradation events occurring during sample processing. These proteins are not apparent in electrophoretic separations of vascular tissue or cultured endothelial cells, mesothelial cells or cardiac fibroblasts, which are clearly distinguishable from the 2-D protein patterns of whole heart and of isolated cardiac myocytes and do not appear to reflect variations in the cellular composition of biopsy samples. The different protein patterns observed in cardiomyopathy showed no obvious relationship with New York Heart Association (NYHA) functional class or haemodynamic parameters. The study has demonstrated significant alterations in quantitative protein expression in the DCM heart which would have serious implications for myocyte function. These changes might be explained by altered protease activity in DCM which could exacerbate contractile dysfunction in the failing heart.
Two-dimensional gels offer a powerful method for separating complex protein mixtures, but subsequent methods for analysing individual components, such as protein sequencing and Western immunoblotting, are laborious and slow. The identification of proteins can be accelerated by using a combination of protease digestion and matrix assisted laser desorption-mass spectrometry (MALDI-MS). The peptide mass spectrum of a protein represents a unique fingerprint determined by the amino acid sequence and the cleavage properties of the protease. Software has been developed so that peptide masses can be used to search a mass-based peptide database generated from established protein sequence databases. A list of the closest matching proteins is produced to allow identification of the sample. The strategy was applied to 52 protein spots from human myocardial tissue separated by two-dimensional electrophoresis (2-DE) gels and analysed blind. Conditions for optimal trypsin digestion of proteins electroblotted onto polyvinylidene difluoride (PVDF) membranes are described. Mass data were generated from both Coomassie Brilliant Blue and sulforhodamine B-stained proteins, though the former required destaining prior to digestion. Alkylation of cysteine and oxidation of methionine were significant modifications that influenced the successful identification of a protein spot. Examples are presented to illustrate the advantages and disadvantages of this approach.
An updated human heart protein two-dimensional electrophoresis (2-DE) database is presented. The database, which contains some 1388 protein spots characterised in terms of M(r) and pI, has been analysed further by Western immunoblotting and protein sequencing. From a total of 103 protein spots analysed, 49 have been identified by immunoblotting and 32 have been identified by protein sequencing. A further six proteins have tentatively been assigned by comparison with the human heart 2-DE protein database of Jungblut et al. (Electrophoresis) 1994, 15, 685-607). This database is being used in studies of alterations in protein expression in the diseased and transplanted human heart.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.