Numerous secretory proteins of the Gram-negative bacteria E. coli are synthesized as precursor proteins which require an amino terminal extension known as the signal peptide for translocation across the cytoplasmic membrane. Following translocation, the signal peptide is proteolytically cleaved from the precursor to produce the mature exported protein. Signal peptides do not exhibit sequence homology, but invariably share common structural features: (1) The basic amino acid residues positioned at the amino terminus of the signal peptide are probably involved in precursor protein binding to the cytoplasmic membrane surface. (2) A stretch of 10 to 15 nonpolar amino acid residues form a hydrophobic core in the signal peptide which can insert into the lipid bilayer. (3) Small residues capable of beta-turn formation are located at the cleavage site in the carboxyl terminus of the signal peptide. (4) Charge characteristics of the amino terminal region of the mature protein can also influence precursor protein export. A variety of mutations in each of the structurally distinct regions of the signal peptide have been constructed via site-directed mutagenesis or isolated through genetic selection. These mutants have shed considerable light on the structure and function of the signal peptide and are reviewed here.
The lipid-modified nine-residue amino-terminal sequence of the mature form of the major outer membrane lipoprotein of Escherichia coli contains information that is responsible for sorting to either the inner or outer membrane. Fusion of this sorting sequence to beta-lactamase is sufficient for localization of the resultant lipo-beta-lactamase to the outer membrane (J. Ghrayeb and M. Inouye, J. Biol. Chem. 259:463-467, 1984). Substitution of the serine adjacent to the amino-terminal lipid-modified cysteine residue of the sorting sequence with the negatively charged residue aspartate causes inner membrane localization (K. Yamaguchi, F. Yu, and M. Inouye, Cell 53:423-432, 1988). Fusion of the aspartate-containing nine-residue inner membrane localization signal to the normally outer membrane lipoprotein bacteriocin release protein does cause partial localization to the inner membrane. However, a single replacement of the glutamine adjacent to the amino-terminal lipid-modified cysteine residue of bacteriocin release protein with aspartate causes no inner membrane localization. Therefore, an aspartate residue itself lacks the information necessary for inner membrane sorting when removed from the structural context provided by the additional eight residues of the sorting sequence. Although the aspartate-containing inner membrane sorting sequence causes an almost quantitative localization to the inner membrane when fused to the otherwise soluble protein beta-lactamase, this sequence cannot prevent significant outer membrane localization when fused to proteins (bacteriocin release protein and OmpA) normally found in the outer membrane. Therefore, structural determinants in addition to the amino-terminal sorting sequence influence the membrane localization of lipoproteins.
In previous investigations, we have examined the effect of OmpA signal peptide mutations on the secretion of the two heterologous proteins TEM beta-lactamase and nuclease A. During these studies, we observed that a given signal peptide mutation could affect differentially the processing of precursor OmpA-nuclease or precursor OmpA-lactamase. This observation led us to further investigate the influence of the mature region of a precursor protein on protein export. Preexisting OmpA signal peptide mutations of known secretion phenotype when directing heterologous protein export (nuclease A or beta-lactamase) were fused to the homologous mature OmpA protein. Four signal peptide mutations that have previously been shown to prevent export of nuclease A and beta-lactamase were found to support OmpA protein export, albeit at reduced rates. This remarkable retention of export activity by severely defective precursor OmpA signal peptide mutants may be due to the ability of mature OmpA to interact with the cytoplasmic membrane. In addition, these same signal peptide mutations can affect the level of OmpA synthesis as well as its proper assembly in the outer membrane of Escherichia coli. Two signal peptide mutations dramatically stimulate the rate of precursor OmpA synthesis three- to fivefold above the level observed when a wild-type signal peptide is directing export. The complete removal of the OmpA signal peptide does not result in increased OmpA synthesis. This finding suggests that the signal peptide mutations function positively to stimulate OmpA synthesis, rather than bypass a down-regulatory mechanism effected by a wild-type signal peptide. Overproduction of wild-type precursor OmpA or precursors containing signal peptide mutations which lead to relatively minor kinetic processing defects results in accumulation of an improperly assembled OmpA species (imp-OmpA). In contrast, signal peptide mutations which cause relatively severe processing defects accumulate no or only small quantities of imp-OmpA. All mutations result in equivalent levels of properly assembled OmpA. Thus, a strong correlation between imp-OmpA accumulation and cell toxicity was observed. A mutation in the mature region of OmpA which prevents the proper outer membrane assembly of OmpA was suppressed when export was directed by a severely defective signal peptide. These findings suggest that signal peptide mutations indirectly influence OmpA assembly in the outer membrane by altering both the level and rate of OmpA secretion across the cytoplasmic membrane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.