An algorithm based on the physics of radiative transfer in vegetation canopies for the retrieval of vegetation green leaf area index (LAI) and fraction of absorbed photosynthetically active radiation (FPAR) from surface reflectances was developed and implemented for operational processing prior to the launch of the moderate resolution imaging spectroradiometer (MODIS) aboard the TERRA platform in December of 1999. The performance of the algorithm has been extensively tested in prototyping activities prior to operational production. Considerable attention was paid to characterizing the quality of the product and this information is available to the users as quality assessment (QA) accompanying the product. The MODIS LAI/FPAR product has been operationally produced from day one of science data processing from MODIS and is available free of charge to the users from the Earth Resources Observation System (EROS) Data Center Distributed Active Archive Center. Current and planned validation activities are aimed at evaluating the product at several field sites representative of the six structural biomes. Example results illustrating the physics and performance of the algorithm are presented together with initial QA and validation results. Potential users of the product are advised of the provisional nature of the product in view of changes to calibration, geolocation, cloud screening, atmospheric correction and ongoing validation activities. D
[1] Partitioning of solar energy at the Earth surface has significant implications in climate dynamics, hydrology, and ecology. Consequently, spatial mapping of energy partitioning from satellite remote sensing data has been an active research area for over two decades. We developed an algorithm for estimating evaporation fraction (EF), expressed as a ratio of actual evapotranspiration (ET) to the available energy (sum of ET and sensible heat flux), from satellite data. The algorithm is a simple two-source model of ET. We characterize a landscape as a mixture of bare soil and vegetation and thus we estimate EF as a mixture of EF of bare soil and EF of vegetation. In the estimation of EF of vegetation, we use the complementary relationship of the actual and the potential ET for the formulation of EF. In that, we use the canopy conductance model for describing vegetation physiology. On the other hand, we use ''VI-T s '' (vegetation index-surface temperature) diagram for estimation of EF of bare soil. As operational production of EF globally is our goal, the algorithm is primarily driven by remote sensing data but flexible enough to ingest ancillary data when available. We validated EF from this prototype algorithm using NOAA/AVHRR data with actual observations of EF at AmeriFlux stations (standard error ffi 0.17 and R 2 ffi 0.71). Global distribution of EF every 8 days will be operationally produced by this algorithm using the data of MODIS on EOS-PM (Aqua) satellite.
We introduce UNIversal CORridor network simulator (UNICOR), a species connectivity and corridor identification tool. UNICOR applies Dijkstra's shortest path algorithm to individual‐based simulations. Outputs can be used to designate movement corridors, identify isolated populations, and prioritize conservation plans to promote species persistence. The key features include a driver‐module framework, connectivity mapping with thresholding and buffering, and calculation of graph theory metrics. Through parallel‐processing, computational efficiency is greatly improved, allowing analyses of large extents and entire populations. Previously available approaches are limited by prolonged computational times and poor algorithmic efficiency, restricting problem‐size and requiring artificial subsampling of populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.